Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Grothendieck’s existence theorem in analytic geometry and related results


Author: Siegmund Kosarew
Journal: Trans. Amer. Math. Soc. 328 (1991), 259-306
MSC: Primary 32C35; Secondary 32G07, 32G13
DOI: https://doi.org/10.1090/S0002-9947-1991-1014252-X
MathSciNet review: 1014252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We state and prove several kinds of analytification theorems of formal objects (such as coherent sheaves and formal complex spaces) which are in the spirit of Grothendieck’s algebraization theorem in [EGA, III]. The formulation of the results was derived from deformation theory and especially M. Artin’s work on representability of functors. The methods of proof depend heavily on a deeper study of cotangent complexes and resolvants. As applications one can deduce the convergence of formal versal deformations in diverse situations.


References [Enhancements On Off] (What's this?)

  • M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71. MR 0260746
  • Jürgen Bingener, Über formale komplexe Räume, Manuscripta Math. 24 (1978), no. 3, 253–293 (German). MR 492367, DOI https://doi.org/10.1007/BF01167833
  • Jürgen Bingener, Darstellbarkeitskriterien für analytische Funktoren, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 3, 317–347 (German). MR 597743
  • Jürgen Bingener, Offenheit der Versalität in der analytischen Geometrie, Math. Z. 173 (1980), no. 3, 241–281 (German). MR 592373, DOI https://doi.org/10.1007/BF01159663
  • J. Bingener and S. Kosarew, Lokale Modulräume in der analytischen Geometrie, Aspects of Math., D2, D3, Vieweg-Verlag, Braunschweig, 1987.
  • Adrien Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 1–95 (French). MR 203082
  • A. Douady, Le problème des modules locaux pour les espaces ${\bf C}$-analytiques compacts, Ann. Sci. École Norm. Sup. (4) 7 (1974), 569–602 (1975) (French). MR 382729
  • Hubert Flenner and Siegmund Kosarew, On locally trivial deformations, Publ. Res. Inst. Math. Sci. 23 (1987), no. 4, 627–665. MR 918518, DOI https://doi.org/10.2977/prims/1195176251
  • Otto Forster and Knut Knorr, Konstruktion verseller Familien kompakter komplexer Räume, Lecture Notes in Mathematics, vol. 705, Springer, Berlin, 1979 (German). MR 529598
  • J. Frisch, Aplatissement en géométrie analytique, Ann. Sci. École Norm. Sup. (4) 1 (1968), 305–312 (French). MR 236421
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).
  • Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
  • Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975
  • V. P. Palamodov, Deformations of complex spaces, Uspehi Mat. Nauk 31 (1976), no. 3(189), 129–194 (Russian). MR 0508121
  • ---, The tangent complex of an analytic space, Amer. Math. Soc. Transl. 122 (1984), 119-171.
  • Geneviève Pourcin, Théorème de Douady au-dessus de $S$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 23 (1969), 451–459 (French). MR 257402
  • Yum Tong Siu and Günther Trautmann, Deformations of coherent analytic sheaves with compact supports, Mem. Amer. Math. Soc. 29 (1981), no. 238, iii+155. MR 597091, DOI https://doi.org/10.1090/memo/0238

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C35, 32G07, 32G13

Retrieve articles in all journals with MSC: 32C35, 32G07, 32G13


Additional Information

Article copyright: © Copyright 1991 American Mathematical Society