Cohomology of metacyclic groups
HTML articles powered by AMS MathViewer
- by Johannes Huebschmann
- Trans. Amer. Math. Soc. 328 (1991), 1-72
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031239-1
- PDF | Request permission
Abstract:
Let ${\mathbf {e}}:1 \to N \to G \to K \to 1$ be an extension of a finite cyclic group $N$ by a finite cyclic group $K$. Using homological perturbation theory, we introduce the beginning of a free resolution of the integers ${\mathbf {Z}}$ over the group ring ${\mathbf {Z}}G$ of $G$ in such a way that the resolution reflects the structure of $G$ as an extension of $N$ by $K$, and we use this resolution to compute the additive structure of the integral cohomology of $G$ in many cases. We proceed by first establishing a number of special cases, thereafter constructing suitable cohomology classes thereby obtaining a lower bound, then computing characteristic classes introduced in an earlier paper, and, finally, exploiting these classes, obtaining upper bounds for the cohomology via the integral cohomology spectral sequence of the extension ${\mathbf {e}}$. The calculation is then completed by comparing the two bounds.References
- Kahtan Alzubaidy, Metacyclic $p$-groups and Chern classes, Illinois J. Math. 26 (1982), no. 3, 423–431. MR 658453
- Michel André, Le $d_{2}$ de la suite spectrale en cohomologie des groupes, C. R. Acad. Sci. Paris 260 (1965), 2669–2671 (French). MR 197526
- Michel André, Homologie des extensions de groupes, C. R. Acad. Sci. Paris 260 (1965), 3820–3823 (French). MR 197527
- F. Rudolf Beyl, The Schur multiplicator of metacyclic groups, Proc. Amer. Math. Soc. 40 (1973), 413–418. MR 325759, DOI 10.1090/S0002-9939-1973-0325759-7
- F. Rudolf Beyl and Jürgen Tappe, Group extensions, representations, and the Schur multiplicator, Lecture Notes in Mathematics, vol. 958, Springer-Verlag, Berlin-New York, 1982. MR 681287
- William Browder, Cohomology and group actions, Invent. Math. 71 (1983), no. 3, 599–607. MR 695909, DOI 10.1007/BF02095996
- R. Brown, The twisted Eilenberg-Zilber theorem, Simposio di Topologia (Messina, 1964) Edizioni “Oderisi”, Gubbio, 1965, pp. 33–37. MR 0220273
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Bohumil Cenkl and Richard Porter, Cup-$i$ product and higher homotopies in the de Rham complex, Publ. Sec. Mat. Univ. Autònoma Barcelona 26 (1982), no. 3, 9–29. Workshop on algebraic topology (Barcelona, 1982). MR 763330
- L. S. Charlap and A. T. Vasquez, The cohomology of group extensions, Trans. Amer. Math. Soc. 124 (1966), 24–40. MR 214665, DOI 10.1090/S0002-9947-1966-0214665-5
- L. S. Charlap and A. T. Vasquez, Characteristic classes for modules over groups. I, Trans. Amer. Math. Soc. 137 (1969), 533–549. MR 268282, DOI 10.1090/S0002-9947-1969-0268282-4
- Leonard Evens and Stewart Priddy, The cohomology of the semidihedral group, Conference on algebraic topology in honor of Peter Hilton (Saint John’s, Nfld., 1983) Contemp. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1985, pp. 61–72. MR 789794, DOI 10.1090/conm/037/789794
- V. K. A. M. Gugenheim, On the chain-complex of a fibration, Illinois J. Math. 16 (1972), 398–414. MR 301736
- V. K. A. M. Gugenheim, On a perturbation theory for the homology of the loop-space, J. Pure Appl. Algebra 25 (1982), no. 2, 197–205. MR 662761, DOI 10.1016/0022-4049(82)90036-6
- V. K. A. M. Gugenheim and L. A. Lambe, Perturbation theory in differential homological algebra. I, Illinois J. Math. 33 (1989), no. 4, 566–582. MR 1007895
- V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Algebraic aspects of Chen’s twisting cochain, Illinois J. Math. 34 (1990), no. 2, 485–502. MR 1046572
- V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff, Perturbation theory in differential homological algebra. II, Illinois J. Math. 35 (1991), no. 3, 357–373. MR 1103672
- V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, Memoirs of the American Mathematical Society, No. 142, American Mathematical Society, Providence, R.I., 1974. MR 0394720
- V. K. A. M. Gugenheim and R. J. Milgram, On successive approximations in homological algebra, Trans. Amer. Math. Soc. 150 (1970), 157–182. MR 260838, DOI 10.1090/S0002-9947-1970-0260838-6
- V. K. A. M. Gugenheim and H. J. Munkholm, On the extended functoriality of Tor and Cotor, J. Pure Appl. Algebra 4 (1974), 9–29. MR 347946, DOI 10.1016/0022-4049(74)90026-7
- V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and $A_\infty$-structures, Bull. Soc. Math. Belg. Sér. A 38 (1986), 237–246 (1987). MR 885535
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8
- Johannes Huebschmann, Perturbation theory and free resolutions for nilpotent groups of class $2$, J. Algebra 126 (1989), no. 2, 348–399. MR 1024997, DOI 10.1016/0021-8693(89)90310-4
- Johannes Huebschmann, Cohomology of nilpotent groups of class $2$, J. Algebra 126 (1989), no. 2, 400–450. MR 1024998, DOI 10.1016/0021-8693(89)90311-6
- Johannes Huebschmann, Change of rings and characteristic classes, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 1, 29–56. MR 994078, DOI 10.1017/S0305004100067967 —, Chern classes for metacyclic groups, Arch. Math. (to appear). —, Change of rings and modules up to higher homotopies (in preparation). —, Cohomology of solvable groups (in preparation).
- Johannes Huebschmann, The mod-$p$ cohomology rings of metacyclic groups, J. Pure Appl. Algebra 60 (1989), no. 1, 53–103. MR 1014607, DOI 10.1016/0022-4049(89)90107-2 —, The homotopy type of $F{\Psi ^q}$. The complex and symplectic cases, Applications of Algebraic $K$-Theory to Algebraic Geometry and Number Theory, Part II (Proc. Conf. Boulder, Colorado, June 12-18, 1983), Contemporary Math., vol. 55, Amer. Math. Soc., Providence, R.I., 1986, pp. 487-518. —, Perturbation theory and small models for the chains of certain induced fibre spaces, Habilitat. Univ. Heidelberg, 1984, Zbl 576.55012. —, Minimal free multi models for chain algebras, Preprint, 1990.
- Johannes Huebschmann and Tornike Kadeishvili, Small models for chain algebras, Math. Z. 207 (1991), no. 2, 245–280. MR 1109665, DOI 10.1007/BF02571387
- Larry Lambe and Jim Stasheff, Applications of perturbation theory to iterated fibrations, Manuscripta Math. 58 (1987), no. 3, 363–376. MR 893160, DOI 10.1007/BF01165893 D. S. Larson, The integral cohomology rings of split metacyclic groups, Ph.D. Thesis, University of Minnesota, 1987.
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- Gene Lewis, The integral cohomology rings of groups of order $p^{3}$, Trans. Amer. Math. Soc. 132 (1968), 501–529. MR 223430, DOI 10.1090/S0002-9947-1968-0223430-6
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, No. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 548575
- Chih Han Sah, Cohomology of split group extensions, J. Algebra 29 (1974), 255–302. MR 393273, DOI 10.1016/0021-8693(74)90099-4
- Michishige Tezuka and Nobuaki Yagita, The varieties of the mod $p$ cohomology rings of extra special $p$-groups for an odd prime $p$, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 449–459. MR 720796, DOI 10.1017/S0305004100000840
- C. B. Thomas, Chern classes and metacyclic $p$-groups, Mathematika 18 (1971), 196–200. MR 299699, DOI 10.1112/S0025579300005453
- C. B. Thomas, Chern classes of representations, Bull. London Math. Soc. 18 (1986), no. 3, 225–240. MR 829579, DOI 10.1112/blms/18.3.225
- C. B. Thomas, Characteristic classes and the cohomology of finite groups, Cambridge Studies in Advanced Mathematics, vol. 9, Cambridge University Press, Cambridge, 1986. MR 878978
- C. T. C. Wall, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961), 251–255. MR 178046, DOI 10.1017/s0305004100035155 H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner Verlag, Leipzig, 1937; English transl., Chelsea, New York, 1949.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 1-72
- MSC: Primary 20J06
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031239-1
- MathSciNet review: 1031239