Homogeneous distributions on the Heisenberg group and representations of $\textrm {SU}(2,1)$
HTML articles powered by AMS MathViewer
- by R. C. Fabec
- Trans. Amer. Math. Soc. 328 (1991), 351-391
- DOI: https://doi.org/10.1090/S0002-9947-1991-1043858-7
- PDF | Request permission
Abstract:
A ’Fourier’ transform of tempered distributions on the Heisenberg group is defined to analyze homogeneous distributions relative the group of dilations $(z,t) \mapsto (r z,{r^2}t)$, $r \in {\mathbf {R}}$. An inversion formula is derived for the abelian central Fourier transform of the distribution. These formulas are applied to the family of homogeneous distributions defining the intertwining operators for the group ${\text {SU}}(2,1)$. Explicit unitary structures are determined on subquotient representations and their spectral decompositions on the minimal parabolic subgroup are obtained.References
- A. Abramowitz and I. A. Stegun, Handbook of mathematical functions, National Bureau of Standards, Washington, D.C., 1964.
- L. Corwin and F. P. Greenleaf, Fourier transforms of smooth functions on certain nilpotent Lie groups, J. Functional Analysis 37 (1980), no. 2, 203–217. MR 578932, DOI 10.1016/0022-1236(80)90041-5
- Michael Cowling and Adam Korányi, Harmonic analysis on Heisenberg type groups from a geometric viewpoint, Lie group representations, III (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1077, Springer, Berlin, 1984, pp. 60–100. MR 765552, DOI 10.1007/BFb0072337
- Michael Cowling, Harmonic analysis on some nilpotent Lie groups (with application to the representation theory of some semisimple Lie groups), Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 81–123. MR 748862
- Raymond C. Fabec, Localizable representations of the de Sitter group, J. Analyse Math. 35 (1979), 151–208. MR 555303, DOI 10.1007/BF02791065
- Roger Howe, Quantum mechanics and partial differential equations, J. Functional Analysis 38 (1980), no. 2, 188–254. MR 587908, DOI 10.1016/0022-1236(80)90064-6
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- Hrvoje Kraljević, Representations of the universal convering group of the group $\textrm {SU}(n,\,1)$, Glasnik Mat. Ser. III 8(28) (1973), 23–72 (English, with Serbo-Croatian summary). MR 330355
- Hrvoje Kraljević, On representations of the group $SU(n,1)$, Trans. Amer. Math. Soc. 221 (1976), no. 2, 433–448. MR 409725, DOI 10.1090/S0002-9947-1976-0409725-6
- R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1–62. MR 163988, DOI 10.2307/2372876
- R. A. Kunze and E. M. Stein, Uniformly bounded representations. II. Analytic continuation of the principal series of representations of the $n\times n$ complex unimodular group, Amer. J. Math. 83 (1961), 723–786. MR 163989, DOI 10.2307/2372907
- R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385–442. MR 231943, DOI 10.2307/2373128
- Ronald L. Lipsman, Uniformly bounded representations of the Lorentz groups, Amer. J. Math. 91 (1969), 938–962. MR 267044, DOI 10.2307/2373311
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Calvin C. Moore and Joseph A. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445–462 (1974). MR 338267, DOI 10.1090/S0002-9947-1973-0338267-9
- Paul J. Sally Jr., Analytic continuation of the irreducible unitary representations of the universal covering group of $\textrm {SL}(2,\,R)$, Memoirs of the American Mathematical Society, No. 69, American Mathematical Society, Providence, R.I., 1967. MR 0235068 G. Schiffman, Intégrales d’entralacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3-72.
- Ronald J. Stanke, Analytic uniformly bounded representations of $\textrm {SU}(1,n+1)$, Trans. Amer. Math. Soc. 290 (1985), no. 1, 281–302. MR 787966, DOI 10.1090/S0002-9947-1985-0787966-1
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
- D. P. Želobenko, Discrete symmetry operators for reductive Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 5, 1055–1083, 1199 (Russian). MR 0430166 —, A description of the quasi-simple irreducible representations of the groups ${\text {U}}\,(n,1)$ and ${\text {Spin}}\,(n,1)$, Izv. Akad. Mat. 41 (1977), 31-50; English transl., Math. USSR Izv. (1977).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 351-391
- MSC: Primary 22E25; Secondary 22E45, 22E46
- DOI: https://doi.org/10.1090/S0002-9947-1991-1043858-7
- MathSciNet review: 1043858