Iteration of a composition of exponential functions
HTML articles powered by AMS MathViewer
- by Xiaoying Dong
- Trans. Amer. Math. Soc. 328 (1991), 517-526
- DOI: https://doi.org/10.1090/S0002-9947-1991-1013329-2
- PDF | Request permission
Abstract:
We show that for certain complex parameters ${\lambda _1},\ldots ,{\lambda _{n - 1}}$ and ${\lambda _n}$ the Julia set of the function \[ {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}}\] is the whole plane $\mathbb {C}$. We denote by $\Lambda$ the set of $n$-tuples $({\lambda _1},\ldots ,{\lambda _n}),{\lambda _1},\ldots ,{\lambda _n} \in \mathbb {R}$ for which the equation \[ {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}} - z= 0\] has exact two real solutions. In fact, one of them is an attracting fixed point of \[ {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}},\] which is denoted by $q$. We also show that when $({\lambda _1},\ldots ,{\lambda _n}) \in \Lambda$, the Julia set of \[ {e^{{\lambda _1}{e^{^{{.^{{.^{{.^{{{^{{\lambda _{n - 1}}}}^{{e^\lambda }^{_{{n^z}}}}}}}}}}}}}}}}\] is the complement of the basin of attraction of $q$. The ideas used in this note may also be applicable to more general functions.References
- I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, DOI 10.1007/BF01110294 —, Limit functions and sets of nonnormality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 467 (1970), 1-10.
- I. N. Baker, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4, 483–495. MR 621564
- I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49–77. MR 752391, DOI 10.5186/aasfm.1984.0903
- Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167–171. MR 741732, DOI 10.1090/S0273-0979-1984-15253-4
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94 (French). MR 1504792
- P. Fatou, Sur l’itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337–370 (French). MR 1555220, DOI 10.1007/BF02559517
- Lisa R. Goldberg and Linda Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183–192. MR 857196, DOI 10.1017/S0143385700003394
- MichałMisiurewicz, On iterates of $e^{z}$, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 103–106. MR 627790, DOI 10.1017/s014338570000119x
- Donald L. Shell, On the convergence of infinite exponentials, Proc. Amer. Math. Soc. 13 (1962), 678–681. MR 141910, DOI 10.1090/S0002-9939-1962-0141910-9
- W. J. Thron, Convergence of infinite exponentials with complex elements, Proc. Amer. Math. Soc. 8 (1957), 1040–1043. MR 96054, DOI 10.1090/S0002-9939-1957-0096054-X
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 517-526
- MSC: Primary 58F08; Secondary 30D05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1013329-2
- MathSciNet review: 1013329