On the existence of conformal measures
HTML articles powered by AMS MathViewer
- by Manfred Denker and Mariusz Urbański
- Trans. Amer. Math. Soc. 328 (1991), 563-587
- DOI: https://doi.org/10.1090/S0002-9947-1991-1014246-4
- PDF | Request permission
Abstract:
A general notion of conformal measure is introduced and some basic properties are studied. Sufficient conditions for the existence of these measures are obtained, using a general construction principle. The geometric properties of conformal measures relate equilibrium states and Hausdorff measures. This is shown for invariant subsets of ${S^1}$ under expanding maps.References
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989 —, Hausdorff dimension of quasi circles, Inst. Hautes Études Sci. Publ. Math. 50 (1980), 11-25.
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- Manfred Denker, Gerhard Keller, and Mariusz Urbański, On the uniqueness of equilibrium states for piecewise monotone mappings, Studia Math. 97 (1990), no. 1, 27–36. MR 1074766, DOI 10.4064/sm-97-1-27-36
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Franz Hofbauer and Gerhard Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), no. 1, 119–140. MR 656227, DOI 10.1007/BF01215004
- Franz Hofbauer and Gerhard Keller, Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 23–43. MR 684242, DOI 10.1017/S014338570000955X
- I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985), no. 2, 369–384. MR 794117, DOI 10.1112/plms/s3-51.2.369
- Heather McCluskey and Anthony Manning, Hausdorff dimension for horseshoes, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 251–260. MR 742227, DOI 10.1017/S0143385700001966
- M. Misiurewicz, A short proof of the variational principle for a $Z^{n}_{+}$ action on a compact space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 12, 1069–1075 (English, with Russian summary). MR 430213
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 281–323. MR 903855
- Feliks Przytycki, Mariusz Urbański, and Anna Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. II, Studia Math. 97 (1991), no. 3, 189–225. MR 1100687, DOI 10.4064/sm-97-3-189-225
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI 10.1017/s0143385700009603
- Michael Shub and Dennis Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 285–289. MR 796755, DOI 10.1017/S014338570000290X
- Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, DOI 10.1007/BFb0061443
- Mariusz Urbański, On Hausdorff dimension of invariant sets for expanding maps of a circle, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 295–309. MR 857203, DOI 10.1017/S0143385700003461
- Mariusz Urbański, Invariant subsets of expanding mappings of the circle, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 627–645. MR 922369, DOI 10.1017/S0143385700004247
- M. Urbański, Hausdorff dimension of invariant subsets for endomorphisms of the circle with an indifferent fixed point, J. London Math. Soc. (2) 40 (1989), no. 1, 158–170. MR 1028920, DOI 10.1112/jlms/s2-40.1.158
- M. Urbański, On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point, Studia Math. 97 (1991), no. 3, 167–188. MR 1100686, DOI 10.4064/sm-97-3-167-188
- Peter Walters, Equilibrium states for $\beta$-transformations and related transformations, Math. Z. 159 (1978), no. 1, 65–88. MR 466492, DOI 10.1007/BF01174569
- Lai Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 109–124. MR 684248, DOI 10.1017/s0143385700009615
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 563-587
- MSC: Primary 58F11; Secondary 28A12, 28A78, 28D05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1014246-4
- MathSciNet review: 1014246