Continuity of translation in the dual of $L^ \infty (G)$ and related spaces
HTML articles powered by AMS MathViewer
- by Colin C. Graham, Anthony T. M. Lau and Michael Leinert
- Trans. Amer. Math. Soc. 328 (1991), 589-618
- DOI: https://doi.org/10.1090/S0002-9947-1991-1014247-6
- PDF | Request permission
Abstract:
Let $X$ be a Banach space and $G$ a locally compact Hausdorff group that acts as a group of isometric linear operators on $X$. The operation of $x \in G$ on $X$ will be denoted by ${L_x}$. We study the set ${X_c}$ of elements $\mu \in X$ such that $x \mapsto {L_x}\mu$ is continuous with respect to the topology on $G$ and the norm-topology on $X$. The spaces $X$ studied include $M{(G)^{\ast } },{\text {LUC}}{(G)^{\ast } },{L^\infty }{(G)^{\ast } },{\text {VN}}(G)$, and ${\text {VN}}{(G)^{\ast } }$. In most cases, characterizations of ${X_c}$ do not appear to be possible, and we give constructions that illustrate this. We relate properties of ${X_c}$ to properties of $G$. For example, if ${X_c}$ is sufficiently small, then $G$ is compact, or even finite, depending on the case. We give related results and open problems.References
- Charles A. Akemann and Martin E. Walter, Non-abelian Pontriagin duality, Duke Math. J. 39 (1972), 451–463. MR 315046
- Ching Chou, On topologically invariant means on a locally compact group, Trans. Amer. Math. Soc. 151 (1970), 443–456. MR 269780, DOI 10.1090/S0002-9947-1970-0269780-8
- Ching Chou, Anthony To Ming Lau, and Joseph Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), no. 2, 340–350. MR 784527
- V. G. Drinfel′d, Finitely-additive measures on $S^{2}$ and $S^{3}$, invariant with respect to rotations, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 77 (Russian). MR 757256 N. Dunford and J. Schwartz, Linear operators, I, II, III, Interscience, New York, 1957.
- Charles F. Dunkl and Donald E. Ramirez, $C^{\ast }$-algebras generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435–441. MR 310548, DOI 10.1090/S0002-9947-1972-0310548-3
- Charles F. Dunkl and Donald E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514. MR 372531, DOI 10.1090/S0002-9947-1973-0372531-2
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607 L. Fuchs, Infinite abelian groups, I, II, Academic Press, New York, 1970, 1973.
- L. Terrell Gardner, Uniformly closed Fourier algebras, Acta Sci. Math. (Szeged) 33 (1972), 211–216. MR 320223
- I. Glicksberg, Some remarks on absolute continuity on groups, Proc. Amer. Math. Soc. 40 (1973), 135–139. MR 320630, DOI 10.1090/S0002-9939-1973-0320630-9
- Colin C. Graham, Anthony To Ming Lau, and Michael Leinert, Separable translation-invariant subspaces of $M(G)$ and other dual spaces on locally compact groups, Colloq. Math. 55 (1988), no. 1, 131–145. MR 964330, DOI 10.4064/cm-55-1-131-145
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606, DOI 10.1007/978-1-4612-9976-9
- Edmond Granirer, Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc. 40 (1973), 615–624. MR 340962, DOI 10.1090/S0002-9939-1973-0340962-8
- Edmond E. Granirer, Density theorems for some linear subspaces and some $C^*$-subalgebras of $\textrm {VN}(G)$, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 61–70. MR 0487287
- Edmond E. Granirer, On group representations whose $C^{\ast }$-algebra is an ideal in its von Neumann algebra, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, v, 37–52 (English, with French summary). MR 558587
- E. Granirer and Anthony T. Lau, Invariant means on locally compact groups, Illinois J. Math. 15 (1971), 249–257. MR 277667, DOI 10.1215/ijm/1256052712
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- B. E. Johnson, Separate continuity and measurability, Proc. Amer. Math. Soc. 20 (1969), 420–422. MR 236345, DOI 10.1090/S0002-9939-1969-0236345-0
- Shizuo Kakutani and Kunihiko Kodaira, Über das Haarsche Mass in der lokal bikompakten Gruppe, Proc. Imp. Acad. Tokyo 20 (1944), 444–450 (German). MR 14401
- Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180–A1182 (French). MR 239002
- G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235. MR 596890, DOI 10.1007/BF01295368
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285–291. MR 304553, DOI 10.1090/S0002-9947-1972-0304553-0
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219–227. MR 304975, DOI 10.4064/sm-44-3-219-227 —, Homomorphisms and translates in ${L^\infty }(G)$, Adv. in Math. 15 (1975), 72-90.
- W. Ruppert, On semigroup compactifications of topological groups, Proc. Roy. Irish Acad. Sect. A 79 (1979), no. 17, 179–200. MR 570414 W. Schachermeyer, Private communication.
- Michel Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 1, vi, 39–69 (English, with French summary). MR 658942
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 589-618
- MSC: Primary 43A15; Secondary 43A10, 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1991-1014247-6
- MathSciNet review: 1014247