Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\mathbf {C}^ n$
HTML articles powered by AMS MathViewer
- by Ji Huai Shi
- Trans. Amer. Math. Soc. 328 (1991), 619-637
- DOI: https://doi.org/10.1090/S0002-9947-1991-1016807-5
- PDF | Request permission
Abstract:
In this paper, the following two inequalities are proved: \[ \int _0^1 {{(1 - r)}^{a|\alpha | + b}}M_p^a(r,D^{\alpha } f) dr \leq K\int _0^1 {{(1 - r)}^b}M_p^a(r,f) dr, \int _0^1 {{(1 - r)}^b}M_p^a(r,f) dr \\ \leq K\left \{ \sum \limits _{|\alpha | \leq m - 1} |({D^\alpha }f)(0)|^a + \sum \limits _{|\alpha | = m} \int _0^1 {(1 - r)}^{am + b}M_p^a(r,D^{\alpha }f) dr \right \} \] where $\alpha = ({\alpha _1}, \ldots ,{\alpha _n})$ is multi-index, $0 < p < \infty ,0 < a < \infty$ and $- 1 < b < \infty$. These are a generalization of some classical results of Hardy and Littlewood. Using these two inequalities, we generalize a theorem in $[9]$. The methods used in the proof of Theorem 1 lead us to obtain Theorem 7, which enables us to generalize some theorems about the pluriharmonic conjugates in $[8]$ and $[2]$.References
- S. Bochner, Classes of holomorphic functions of several variables in circular domains, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 721–723. MR 120390, DOI 10.1073/pnas.46.5.721
- Wu Young Chen, Hardy and Lipschitz spaces of holomorphic functions and pluriharmonic functions over bounded symmetric domains in $\textbf {C}^N$, Chinese J. Math. 15 (1987), no. 1, 31–41. MR 907153
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746–765. MR 304667, DOI 10.1016/0022-247X(72)90081-9
- Miroslav Pavlović, Mean values of harmonic conjugates in the unit disc, Complex Variables Theory Appl. 10 (1988), no. 1, 53–65. MR 946099, DOI 10.1080/17476938808814287
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- Ji Huai Shi, On the rate of growth of the means $M_p$ of holomorphic and pluriharmonic functions on bounded symmetric domains of $\textbf {C}^n$, J. Math. Anal. Appl. 126 (1987), no. 1, 161–175. MR 900536, DOI 10.1016/0022-247X(87)90083-7
- Manfred Stoll, On the rate of growth of the means $M_{p}$ of holomorphic and pluriharmonic functions on the ball, J. Math. Anal. Appl. 93 (1983), no. 1, 109–127. MR 699704, DOI 10.1016/0022-247X(83)90221-4
- Ke He Zhu, The Bergman spaces, the Bloch space, and Gleason’s problem, Trans. Amer. Math. Soc. 309 (1988), no. 1, 253–268. MR 931533, DOI 10.1090/S0002-9947-1988-0931533-6
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 619-637
- MSC: Primary 32A10; Secondary 31C10, 32F05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1016807-5
- MathSciNet review: 1016807