Quantitative stability of variational systems. I. The epigraphical distance
HTML articles powered by AMS MathViewer
- by Hédy Attouch and Roger J.-B. Wets
- Trans. Amer. Math. Soc. 328 (1991), 695-729
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018570-0
- PDF | Request permission
Abstract:
This paper proposes a global measure for the distance between the elements of a variational system (parametrized families of optimization problems).References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch, D. Azé, and J.-C. Peralba, Comparaison de différentes métriques liées à l’épiconvergence (in preparation).
- H. Attouch, D. Azé, and R. Wets, On continuity properties of the partial Legendre-Fenchel transform: convergence of sequences of augmented Lagrangian functions, Moreau-Yosida approximates and subdifferential operators, FERMAT days 85: mathematics for optimization (Toulouse, 1985) North-Holland Math. Stud., vol. 129, North-Holland, Amsterdam, 1986, pp. 1–42. MR 874359, DOI 10.1016/S0304-0208(08)72392-2
- H. Attouch and A. Damlamian, Problèmes d’évolution dans les Hilberts et applications, J. Math. Pures Appl. (9) 54 (1975), 53–74 (French). MR 454756
- Hédy Attouch, Roberto Lucchetti, and Roger J.-B. Wets, The topology of the $\rho$-Hausdorff distance, Ann. Mat. Pura Appl. (4) 160 (1991), 303–320 (1992). MR 1163212, DOI 10.1007/BF01764131
- Hédy Attouch and Roger J.-B. Wets, Isometries for the Legendre-Fenchel transform, Trans. Amer. Math. Soc. 296 (1986), no. 1, 33–60. MR 837797, DOI 10.1090/S0002-9947-1986-0837797-X
- Hédy Attouch and Roger J.-B. Wets, Another isometry for the Legendre-Fenchel transform, J. Math. Anal. Appl. 131 (1988), no. 2, 404–411. MR 935277, DOI 10.1016/0022-247X(88)90214-4
- Hédy Attouch, Jean-Pierre Aubin, Francis Clarke, and Ivar Ekeland (eds.), Analyse non linéaire, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC; Gauthier-Villars, Paris, 1989. Contributions en l’honneur de J.-J. Moreau. [Contributions in honor of J.-J. Moreau]. MR 1204007 —, Quantitative stability of variational systems: II. A framework for nonlinear conditioning, IIASA Working Paper 88-9, Laxemburg, Austria, February 1988. —, Lipschitzian stability of the $\varepsilon$-approximate solutions in convex optimization, IIASA Working Paper WP-87-25, Laxemburg, Austria, March 1987.
- Jean-Pierre Aubin, Comportement lipschitzien des solutions de problèmes de minimisation convexes, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 3, 235–238 (French, with English summary). MR 681586 D. Azé, Convergence variationlile et dualité. Applications en calcul des variations et en programmation mathématique, Thèse de Doctorat, AVAMAC-Perpignan, 1985. D. Azé and J.-P. Penot, Operations on convergent families of sets and functions, Technical Report AVAMAC, Perpignan, 1987. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de ilubert, North-Holland, Amsterdam, 1973. V. Chiado Piat, G. Dal Maso, and A. Defranceschi, $G$-convergence of monotone operators, SISSA Ref. 84M, Trieste, July 1988.
- Nobuyuki Kenmochi, The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities, Proc. Japan Acad. 50 (1974), 714–717. MR 375020
- J.-J. Moreau, Intersection of moving convex sets in a normed space, Math. Scand. 36 (1975), 159–173. MR 442644, DOI 10.7146/math.scand.a-11569
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 167–184 (English, with French summary). MR 797269, DOI 10.1016/S0294-1449(16)30401-2
- R. T. Rockafellar and Roger J.-B. Wets, Variational systems, an introduction, Multifunctions and integrands (Catania, 1983) Lecture Notes in Math., vol. 1091, Springer, Berlin, 1984, pp. 1–54. MR 785574, DOI 10.1007/BFb0098800
- Gabriella Salinetti and Roger J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18–33. MR 516381, DOI 10.1137/1021002
- Gabriella Salinetti and Roger J.-B. Wets, On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc. 266 (1981), no. 1, 275–289. MR 613796, DOI 10.1090/S0002-9947-1981-0613796-3 R. Schultz, Estimates for Kuhn-Tucker points of perturbed convex programs, Technical Report, Humboldt Univ., Berlin, 1986.
- David W. Walkup and Roger J.-B. Wets, Continuity of some convex-cone-valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229–235. MR 209806, DOI 10.1090/S0002-9939-1967-0209806-6
- R. J.-B. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978) Wiley, Chichester, 1980, pp. 375–403. MR 578760
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 695-729
- MSC: Primary 90C31; Secondary 49J52, 54C35
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018570-0
- MathSciNet review: 1018570