Heegaard diagrams of $3$-manifolds
HTML articles powered by AMS MathViewer
- by Mitsuyuki Ochiai
- Trans. Amer. Math. Soc. 328 (1991), 863-879
- DOI: https://doi.org/10.1090/S0002-9947-1991-1020041-2
- PDF | Request permission
Abstract:
For a $3$-manifold $M(L)$ obtained by an integral Dehn surgery along an $n$-bridge link $L$ with $n$-components we define a concept of planar Heegaard diagrams of $M(L)$ using a link diagram of $L$. Then by using Homma-Ochiai-Takahashi’s theorem and a planar Heegaard diagram of $M(L)$ we will completely determine if $M(L)$ is the standard $3$-sphere in the case when $L$ is a $2$-bridge link with $2$-components.References
- Joan S. Birman, Special Heegaard splittings for closed, oriented $3$-manifolds, Topology 17 (1978), no. 2, 157–166. MR 482764, DOI 10.1016/S0040-9383(78)90020-4
- Joan S. Birman and Hugh M. Hilden, Heegaard splittings of branched coverings of $S^{3}$, Trans. Amer. Math. Soc. 213 (1975), 315–352. MR 380765, DOI 10.1090/S0002-9947-1975-0380765-8
- Joan S. Birman and Jerome Powell, Special representations for $3$-manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 23–51. MR 537723
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- John Hempel, Construction of orientable $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207–212. MR 0140115
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- Osamu Morikawa, A counterexample to a conjecture of Whitehead, Math. Sem. Notes Kobe Univ. 8 (1980), no. 2, 295–298. MR 601897
- Mitsuyuki Ochiai, Dehn’s surgery along $2$-bridge knots, Yokohama Math. J. 26 (1978), no. 1, 69–75. MR 524884
- Mitsuyuki Ochiai, A Heegaard-diagram of the $3$-sphere, Osaka J. Math. 22 (1985), no. 4, 871–873. MR 815455
- Tatsuo Homma, Mitsuyuki Ochiai, and Moto-o Takahashi, An algorithm for recognizing $S^{3}$ in $3$-manifolds with Heegaard splittings of genus two, Osaka Math. J. 17 (1980), no. 3, 625–648. MR 591141
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875
- O. Ja. Viro and V. L. Kobel′skiĭ, The Volodin-Kuznecov-Fomenko conjecture on Heegaard diagrams is false, Uspehi Mat. Nauk 32 (1977), no. 5(197), 175–176 (Russian). MR 0467757
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X J. H. C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. (2) 41 (1936), 48-56.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 863-879
- MSC: Primary 57N10; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1991-1020041-2
- MathSciNet review: 1020041