Regularity properties of commutators and layer potentials associated to the heat equation
HTML articles powered by AMS MathViewer
- by John L. Lewis and Margaret A. M. Murray
- Trans. Amer. Math. Soc. 328 (1991), 815-842
- DOI: https://doi.org/10.1090/S0002-9947-1991-1020043-6
- PDF | Request permission
Abstract:
In recent years there has been renewed interest in the solution of parabolic boundary value problems by the method of layer potentials. In this paper we consider graph domains $D = \{ (x,t):x > f(t)\}$ in ${\mathcal {R}^2}$, where the boundary function $f$ is in ${I_{1/2}}({\text {BMO}})$. This class of domains would appear to be the minimal smoothness class for the solvability of the Dirichlet problem for the heat equation by the method of layer potentials. We show that, for $1 < p < \infty$, the boundary single-layer potential operator for $D$ maps ${L^p}$ into the homogeneous Sobolev space ${I_{1/2}}({L^p})$. This regularity result is obtained by studying the regularity properties of a related family of commutators. Along the way, we prove ${L^p}$ estimates for a class of singular integral operators to which the ${\text {T1}}$ Theorem of David and Journé does not apply. The necessary estimates are obtained by a variety of real-variable methods.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- Russell M. Brown, The method of layer potentials for the heat equation in Lipschitz cylinders, Amer. J. Math. 111 (1989), no. 2, 339–379. MR 987761, DOI 10.2307/2374513
- Russell M. Brown, The initial-Neumann problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc. 320 (1990), no. 1, 1–52. MR 1000330, DOI 10.1090/S0002-9947-1990-1000330-7
- Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397. MR 763911, DOI 10.2307/2006946
- E. B. Fabes and N. M. Rivière, Dirichlet and Neumann problems for the heat equation in $C^{1}$-cylinders, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 179–196. MR 545307
- Robert Kaufman and Jang-Mei Wu, Parabolic measure on domains of class $\textrm {Lip}\,\frac 12$, Compositio Math. 65 (1988), no. 2, 201–207. MR 932644
- John L. Lewis and Judy Silver, Parabolic measure and the Dirichlet problem for the heat equation in two dimensions, Indiana Univ. Math. J. 37 (1988), no. 4, 801–839. MR 982831, DOI 10.1512/iumj.1988.37.37039
- Margaret A. M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J. 34 (1985), no. 1, 205–215. MR 773402, DOI 10.1512/iumj.1985.34.34012
- Margaret A. M. Murray, Multilinear singular integrals involving a derivative of fractional order, Studia Math. 87 (1987), no. 2, 139–165. MR 928573, DOI 10.4064/sm-87-2-139-165
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Robert S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), no. 4, 539–558. MR 578205, DOI 10.1512/iumj.1980.29.29041
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 815-842
- MSC: Primary 35K05; Secondary 31A20, 42B20, 47F05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1020043-6
- MathSciNet review: 1020043