Multibasic Eulerian polynomials
HTML articles powered by AMS MathViewer
- by Dominique Foata and Doron Zeilberger
- Trans. Amer. Math. Soc. 328 (1991), 843-862
- DOI: https://doi.org/10.1090/S0002-9947-1991-1022166-4
- PDF | Request permission
Abstract:
Eulerian polynomials with several bases are defined. Their combinatorial interpretations are given as well as congruence properties modulo some ideals generated by cyclotomic polynomials.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013 Anders Björner and Michelle L. Wachs, Permutation statistics and linear extensions of posets, 1988.
- Jacques Désarménien, Fonctions symétriques associées à des suites classiques de nombres, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 271–304 (French). MR 732346
- Jacques Désarménien and Dominique Foata, Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France 113 (1985), no. 1, 3–22 (French, with English summary). MR 807824
- Jacques Désarménien and Dominique Foata, Statistiques d’ordre sur les permutations colorées, Discrete Math. 87 (1991), no. 2, 133–148 (French, with English summary). MR 1091587, DOI 10.1016/0012-365X(91)90043-2 —, The signed Eulerian numbers (submitted).
- Dominique Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236–240. MR 223256, DOI 10.1090/S0002-9939-1968-0223256-9
- Dominique Foata and Marcel-Paul Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978), 143–159. MR 506852, DOI 10.1002/mana.19780830111
- George Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312 (1989), no. 1, 257–277. MR 953537, DOI 10.1090/S0002-9947-1989-0953537-0
- George Gasper and Mizan Rahman, An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas, Canad. J. Math. 42 (1990), no. 1, 1–27. MR 1043508, DOI 10.4153/CJM-1990-001-5
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251 Ira Gessel, Generating functions and enumeration of sequences, Ph. D. thesis, Dept. Math., M.I.T., Cambridge, Mass., 1977, pp. 111.
- Ira M. Gessel, A $q$-analog of the exponential formula, Discrete Math. 40 (1982), no. 1, 69–80. MR 676713, DOI 10.1016/0012-365X(82)90189-3
- Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching. MR 0445948
- Jean-Louis Loday, Opérations sur l’homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989), no. 1, 205–230 (French). MR 981743, DOI 10.1007/BF01393976
- M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, Mass., 1983. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon; With a foreword by Roger Lyndon; Edited and with a preface by Perrin. MR 675953
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- J. B. Remmel, Permutation statistics and $(k,l)$-hook Schur functions, Discrete Math. 67 (1987), no. 3, 271–298. MR 915951, DOI 10.1016/0012-365X(87)90178-6
- John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594
- Richard P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 336–356. MR 409206, DOI 10.1016/0097-3165(76)90028-5 Michelle J. Wachs, An involution for signed Eulerian numbers (submitted).
- Doron Zeilberger, A lattice walk approach to the “INV” and “MAJ” $q$-counting of multiset permutations, J. Math. Anal. Appl. 74 (1980), no. 1, 192–199. MR 568380, DOI 10.1016/0022-247X(80)90121-3
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 843-862
- MSC: Primary 05A15; Secondary 05A30
- DOI: https://doi.org/10.1090/S0002-9947-1991-1022166-4
- MathSciNet review: 1022166