The Stefan problem with small surface tension
HTML articles powered by AMS MathViewer
- by Avner Friedman and Fernando Reitich
- Trans. Amer. Math. Soc. 328 (1991), 465-515
- DOI: https://doi.org/10.1090/S0002-9947-1991-1040260-9
- PDF | Request permission
Abstract:
The Stefan problem with small surface tension $\varepsilon$ is considered. Assuming that the classical Stefan problem (with $\varepsilon = 0$) has a smooth free boundary $\Gamma$, we denote the temperature of the solution by ${\theta _0}$ and consider an approximate solution ${\theta _0} + \varepsilon u$ for the case where $\varepsilon \ne 0$, $\varepsilon$ small. We first establish the existence and uniqueness of $u$, and then investigate the effect of $u$ on the free boundary $\Gamma$. It is shown that small surface tension affects the free boundary $\Gamma$ radically differently in the two-phase problem than in the one-phase problem.References
- Gunduz Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal. 92 (1986), no. 3, 205–245. MR 816623, DOI 10.1007/BF00254827 B. Chalmers, Principles of solidification, Krieger, Huntington, N.Y., 1977.
- Jean Duchon and Raoul Robert, Évolution d’une interface par capillarité et diffusion de volume. I. Existence locale en temps, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 361–378 (French, with English summary). MR 779874
- Avner Friedman, Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math. 8 (1958), 201–211. MR 102655
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman, Variational principles and free-boundary problems, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982. MR 679313
- Avner Friedman and David Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005–1035. MR 385326, DOI 10.1512/iumj.1975.24.24086 J. W. Gibbs, Collected Works, Yale Univ. Press, New Haven, Conn., 1948.
- Morton E. Gurtin, On the two-phase Stefan problem with interfacial energy and entropy, Arch. Rational Mech. Anal. 96 (1986), no. 3, 199–241. MR 855304, DOI 10.1007/BF00251907
- Morton E. Gurtin, Multiphase thermomechanics with interfacial structure. I. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal. 104 (1988), no. 3, 195–221. MR 1017288, DOI 10.1007/BF00281354
- Ei-ichi Hanzawa, Classical solutions of the Stefan problem, Tohoku Math. J. (2) 33 (1981), no. 3, 297–335. MR 633045, DOI 10.2748/tmj/1178229399 P. Hartman, Crystal growth: An introduction, North-Holland, Amsterdam, 1973.
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821 J. S. Langer, Instabilities and pattern formation in crystal growth, Rev. Mod. Phys. 52 (1980), 1-28.
- Hiroshi Matano, Asymptotic behavior of the free boundaries arising in one-phase Stefan problems in multidimensional spaces, Nonlinear partial differential equations in applied science (Tokyo, 1982) North-Holland Math. Stud., vol. 81, North-Holland, Amsterdam, 1983, pp. 133–151. MR 730240
- A. M. Meĭrmanov, The classical solution of a multidimensional Stefan problem for quasilinear parabolic equations, Mat. Sb. (N.S.) 112(154) (1980), no. 2(6), 170–192 (Russian). MR 585773
- W. W. Mullins, Thermodynamic equilibrium of a crystalline sphere in a fluid, J. Chem. Phys. 81 (1984), no. 3, 1436–1442. MR 758381, DOI 10.1063/1.447779 W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35 (1964), 444-451.
- A. Visintin, Models for supercooling and superheating effects, Free boundary problems: applications and theory, Vol. III (Maubuisson, 1984) Res. Notes in Math., vol. 120, Pitman, Boston, MA, 1985, pp. 200–207. MR 863171
- Stephan Luckhaus, Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, European J. Appl. Math. 1 (1990), no. 2, 101–111. MR 1117346, DOI 10.1017/S0956792500000103
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 465-515
- MSC: Primary 35R35; Secondary 35K20, 35K85
- DOI: https://doi.org/10.1090/S0002-9947-1991-1040260-9
- MathSciNet review: 1040260