Equivariant fixed point index and fixed point transfer in nonzero dimensions
HTML articles powered by AMS MathViewer
- by Carlos Prieto and Hanno Ulrich
- Trans. Amer. Math. Soc. 328 (1991), 731-745
- DOI: https://doi.org/10.1090/S0002-9947-1991-1062875-4
- PDF | Request permission
Abstract:
Dold’s fixed point index and fixed point transfer are generalized for certain coincidence situations, namely maps which change the "equivariant dimension." Those invariants change the dimension correspondingly. A formula for the index of a situation over a space with trivial group action is exhibited. For the transfer, a generalization of Dold’s Lefschetz-Hopf trace formula is proved.References
- J. C. Becker and D. H. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), no. 2, 107–133. MR 436137
- Mónica Clapp, Duality and transfer for parametrized spectra, Arch. Math. (Basel) 37 (1981), no. 5, 462–472. MR 643290, DOI 10.1007/BF01234383
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602
- Albrecht Dold, The fixed point index of fibre-preserving maps, Invent. Math. 25 (1974), 281–297. MR 380776, DOI 10.1007/BF01389731
- Albrecht Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), no. 3, 215–244. MR 433440, DOI 10.1007/BF01214520
- Albrecht Dold and Dieter Puppe, Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 81–102. MR 656721
- J. Ize, I. Massabò, and A. Vignoli, Degree theory for equivariant maps. I, Trans. Amer. Math. Soc. 315 (1989), no. 2, 433–510. MR 935940, DOI 10.1090/S0002-9947-1989-0935940-8
- Czes Kosniowski, Equivariant cohomology and stable cohomotopy, Math. Ann. 210 (1974), 83–104. MR 413081, DOI 10.1007/BF01360033
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Carlos Prieto, Coincidence index for fiber-preserving maps: an approach to stable cohomotopy, Manuscripta Math. 47 (1984), no. 1-3, 233–249. MR 744321, DOI 10.1007/BF01174595 —, $KO(B)$-graded stable cohomotopy over $B$ and $RO(G)$-graded $G$-equivariant cohomotopy: A fixed point theoretical approach to the Segal conjecture, Contemp. Math. 58 (1987), 89-107. —, Una fórmula de Lefschetz-Hopf para el índice de coincidencia equivariante parametrizado, Aportaciones Mat.: Comun. 5 (1988), 73-88. B. Schäfer, Fixpunkttransfer für stetige Familien von $ANR$-Räumen; Existenz und axiomatische Characterisierung, Doktorarbeit, Heidelberg, 1981.
- Hanno Ulrich, Fixed point theory of parametrized equivariant maps, Lecture Notes in Mathematics, vol. 1343, Springer-Verlag, Berlin, 1988. MR 967325, DOI 10.1007/BFb0079799
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 731-745
- MSC: Primary 55R12; Secondary 54H25, 55M20, 55N91, 55P42, 55P91
- DOI: https://doi.org/10.1090/S0002-9947-1991-1062875-4
- MathSciNet review: 1062875