Regular points for ergodic Sinaĭ measures
HTML articles powered by AMS MathViewer
- by Masato Tsujii
- Trans. Amer. Math. Soc. 328 (1991), 747-766
- DOI: https://doi.org/10.1090/S0002-9947-1991-1072103-1
- PDF | Request permission
Abstract:
Ergodic properties of smooth dynamical systems are considered. A point is called regular for an ergodic measure $\mu$ if it is generic for $\mu$ and the Lyapunov exponents at it coincide with those of $\mu$. We show that an ergodic measure with no zero Lyapunov exponent is absolutely continuous with respect to unstable foliation $[\text {L}]$ if and only if the set of all points which are regular for it has positive Lebesgue measure.References
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698, DOI 10.1007/BFb0099031
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math. 59 (1984), 163–188 (French). MR 743818, DOI 10.1007/BF02698772
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280 Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR-Izv. 10 (1976), no. 6, 1261-1305.
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
- Charles Pugh and Michael Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1–54. MR 983869, DOI 10.1090/S0002-9947-1989-0983869-1
- David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581, DOI 10.1007/BF02684768
- David Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 408–416. MR 556846
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 747-766
- MSC: Primary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1991-1072103-1
- MathSciNet review: 1072103