Extending cellular cohomology to $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by Ruy Exel and Terry A. Loring
- Trans. Amer. Math. Soc. 329 (1992), 141-160
- DOI: https://doi.org/10.1090/S0002-9947-1992-1024770-7
- PDF | Request permission
Abstract:
A filtration on the $K$-theory of ${C^*}$-algebras is introduced. The relative quotients define groups ${H_n}(A),n \geq 0$, for any ${C^*}$-algebra $A$, which we call the spherical homology of $A$. This extends cellular cohomology in the sense that \[ {H_n}(C(X)) \otimes {\mathbf {Q}} \cong {H^n}(X;{\mathbf {Q}})\] for $X$ a finite CW-complex. While no extension of cellular cohomology which is derived from a filtration on $K$-theory can be additive, Morita-invariant, and continuous, ${H_n}$ is shown to be infinitely additive, Morita invariant for unital ${C^*}$-algebras, and continuous in limited cases.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Joachim Cuntz, The $K$-groups for free products of $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 81–84. MR 679696
- Ruy Exel, Rotation numbers for automorphisms of $C^\ast$ algebras, Pacific J. Math. 127 (1987), no. 1, 31–89. MR 876017
- P. de la Harpe and G. Skandalis, Déterminant associé à une trace sur une algébre de Banach, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 241–260 (French, with English summary). MR 743629
- Terry A. Loring, The $K$-theory of AF embeddings of the rational rotation algebras, $K$-Theory 4 (1991), no. 3, 227–243. MR 1106954, DOI 10.1007/BF00569448
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Mihai V. Pimsner, Embedding some transformation group $C^{\ast }$-algebras into AF-algebras, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 613–626. MR 753927, DOI 10.1017/S0143385700002182
- Marc A. Rieffel, $C^{\ast }$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572
- Jonathan Rosenberg, The role of $K$-theory in noncommutative algebraic topology, Operator algebras and $K$-theory (San Francisco, Calif., 1981) Contemp. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1982, pp. 155–182. MR 658514
- Claude Schochet, Topological methods for $C^{\ast }$-algebras. III. Axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399–445. MR 757510
- Graeme Segal, $K$-homology theory and algebraic $K$-theory, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977, pp. 113–127. MR 0515311
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 141-160
- MSC: Primary 46L80; Secondary 19K56, 46M20, 58A10, 58G12
- DOI: https://doi.org/10.1090/S0002-9947-1992-1024770-7
- MathSciNet review: 1024770