Two characteristic numbers for smooth plane curves of any degree
HTML articles powered by AMS MathViewer
- by Paolo Aluffi
- Trans. Amer. Math. Soc. 329 (1992), 73-96
- DOI: https://doi.org/10.1090/S0002-9947-1992-1041042-5
- PDF | Request permission
Abstract:
We use a sequence of blow-ups over the projective space parametrizing plane curves of degree $d$ to obtain some enumerative results concerning smooth plane curves of arbitrary degree. For $d = 4$, this gives a first modern verification of results of H. G. Zeuthen.References
- Paolo Aluffi, The enumerative geometry of plane cubics. I. Smooth cubics, Trans. Amer. Math. Soc. 317 (1990), no. 2, 501–539. MR 972700, DOI 10.1090/S0002-9947-1990-0972700-4
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Steven L. Kleiman and Robert Speiser, Enumerative geometry of nonsingular plane cubics, Algebraic geometry: Sundance 1988, Contemp. Math., vol. 116, Amer. Math. Soc., Providence, RI, 1991, pp. 85–113. MR 1108634, DOI 10.1090/conm/116/1108634
- Hermann Schubert, Kalkül der abzählenden Geometrie, Springer-Verlag, Berlin-New York, 1979 (German). Reprint of the 1879 original; With an introduction by Steven L. Kleiman. MR 555576 H. G. Zeuthen, Almindelige Egenskaber ved Systemer af plane Kurver, Kongelige Danske Videnskabernes Selskabs Skrifter-Naturvidenskabelig og Mathematisk 10 (1873), 287-393.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 73-96
- MSC: Primary 14N10; Secondary 14C17
- DOI: https://doi.org/10.1090/S0002-9947-1992-1041042-5
- MathSciNet review: 1041042