Polynomial solutions to constant coefficient differential equations
HTML articles powered by AMS MathViewer
- by S. Paul Smith
- Trans. Amer. Math. Soc. 329 (1992), 551-569
- DOI: https://doi.org/10.1090/S0002-9947-1992-1013339-6
- PDF | Request permission
Abstract:
Let ${D_1}, \ldots ,{D_r} \in \mathbb {C}[\partial /\partial {x_1}, \ldots ,\partial /\partial {x_n}]$ be constant coefficient differential operators with zero constant term. Let \[ S = \{ f \in \mathbb {C}[{x_1}, \ldots ,{x_n}]|{D_j}(f) = 0\;{\text {for all }}1 \leqslant j \leqslant r\} \] be the space of polynomial solutions to the system of simultaneous differential equations ${D_j}(f) = 0$. It is proved that $S$ is a module over $\mathcal {D}(V)$, the ring of differential operators on the affine scheme $V$ with coordinate ring $\mathbb {C}[\partial /\partial {x_1}, \ldots ,\partial /\partial {x_n}]/\left \langle {{D_1}, \ldots ,{D_r}} \right \rangle$. If $V$ is smooth and irreducible, then $S$ is a simple $\mathcal {D}(V)$-module, $S = 1.\mathcal {D}(V)$, and the generators for $\mathcal {D}(V)$ yield an algorithm for obtaining a basis for $S$. If $V$ is singular, then $S$ need not be simple. However, $S$ is still a simple $\mathcal {D}(V)$-module for certain curves $V$, and certain homogeneous spaces $V$, and this allows one to obtain a basis for $S$, through knowledge of $\mathcal {D}(V)$.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802 J. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Differential operators on the cubic cone, Russian Math. Surveys 27 (1972), 169-174.
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189 N. Bourbaki, Algèbre homologique, Hermann, Paris, 1984.
- John Rozier Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by Felix E. Browder. MR 747979, DOI 10.1017/CBO9781139086967
- M. G. M. van Doorn and A. R. P. van den Essen, ${\scr D}_n$-modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 937–953. MR 935708, DOI 10.2977/prims/1195175865
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1–29. MR 404366
- Thierry Levasseur, La dimension de Krull de $U(\textrm {sl}(3))$, J. Algebra 102 (1986), no. 1, 39–59 (French, with English summary). MR 853230, DOI 10.1016/0021-8693(86)90127-4
- T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117. MR 988083, DOI 10.1090/memo/0412
- T. Levasseur, S. P. Smith, and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal, and differential operators, J. Algebra 116 (1988), no. 2, 480–501. MR 953165, DOI 10.1016/0021-8693(88)90231-1
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- Shigetake Matsuura, Factorization of differential operators and decomposition of solutions of homogeneous equations, Osaka Math. J. 15 (1963), 213–231. MR 166634
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- P. Perkins, Commutative subalgebras of the ring of differential operators on a curve, Pacific J. Math. 139 (1989), no. 2, 279–302. MR 1011214
- S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), no. 2, 229–259. MR 922654, DOI 10.1112/plms/s3-56.2.229
- S. P. Smith, Curves, differential operators and finite-dimensional algebras, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 158–176. MR 932054, DOI 10.1007/BFb0078525
- Peter F. Stiller, Some applications of algebraic geometry to systems of partial differential equations and to approximation theory, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 239–250. MR 860419, DOI 10.1090/conm/058.1/860419
- Peter F. Stiller, Some applications of algebraic geometry to systems of partial differential equations and to approximation theory, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 239–250. MR 860419, DOI 10.1090/conm/058.1/860419 F. Treves, Linear partial differential operators, Gordon and Breach, New York, 1970.
- D. V. Widder, The heat equation, Pure and Applied Mathematics, Vol. 67, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0466967
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 551-569
- MSC: Primary 35E20; Secondary 35C05
- DOI: https://doi.org/10.1090/S0002-9947-1992-1013339-6
- MathSciNet review: 1013339