SYMOMETRIC LOCAL ALGEBRAS WITH 5-DIMENSIONAL CENTER

M. CHLEBOWITZ AND B. KÜLSHAMMER

Dedicated to Hiroyuki Tachikawa on the occasion of his sixtieth birthday

Abstract. We prove that a symmetric split local algebra whose center is 5-dimensional has dimension 5 or 8. This implies that the defect groups of a block of a finite group containing exactly five irreducible Frobenius characters and exactly one irreducible Brauer character have order 5 or are nonabelian of order 8.

Let F be a field, and let A be a finite-dimensional associative unitary F-algebra with center Z and radical J. Then A is called split local if $\dim A/J = 1$, and A is called symmetric if there is a linear map $\lambda : A \to F$ whose kernel contains all Lie commutators $[x, y] := xy - yx$ ($x, y \in A$) but no nonzero ideal of A. Suppose now that A is symmetric and split local. In [6] the second author proved that A is necessarily commutative if $\dim Z \leq 4$. This incorporated earlier results by R. Brauer and J. Brandt [1]. In this paper we are dealing with the next case.

Theorem. Let F be a field, and let A be a symmetric split local F-algebra with center Z. If $\dim Z = 5$ then $\dim A \in \{5, 8\}$.

The group algebra of a group of order 5 over a field of characteristic 5 is an example for the case $\dim A = 5$, and the group algebra of a nonabelian group of order 8 over a field of characteristic 2 is an example for the case $\dim A = 8$.

Corollary. Let F be an algebraically closed field, let G be a finite group, let P be an indecomposable projective FG-module, and set $A := \text{End}_{FG}(P)$. If the center of A has dimension 5 then $\dim A \in \{5, 8\}$.

Proof. We choose a primitive idempotent i in FG such that P is isomorphic to FGi. Then A is isomorphic to $iFGi$. Since FG is a symmetric F-algebra, so are $iFGi$ and A. Since P is indecomposable and F is algebraically closed, A is split local. Hence the corollary follows from the theorem.

We have the following application to block theory.

Proposition. Let F be an algebraically closed field, let G be a finite group, and let B be a block of FG containing exactly 5 irreducible complex characters.
and exactly one irreducible Brauer character. Then the defect groups of \(B \) have order 5 or are nonabelian of order 8.

Proof. Let \(P \) denote the only indecomposable projective \(FG \)-module in \(\beta \), and set \(A := \text{End}_{FG}(P) \). By Lemma B in [4], \(B \) is isomorphic to a complete matrix algebra over \(A \); in particular, \(A \) and \(B \) have isomorphic centers. By \((2G)\) in [2], the dimension of the center of \(B \) coincides with the number of irreducible complex characters in \(B \), so the center of \(A \) has dimension 5. By the corollary, \(A \) has dimension 5 or 8. On the other hand, Lemma B in [4] shows that the dimension of \(A \) coincides with the order of a defect group \(D \) of \(B \). Hence \(D \) has order 5 or 8. Assume now that \(D \) is abelian of order 8. Then \(B \) cannot be nilpotent in the sense of [3]; for otherwise \(B \) would contain 8 irreducible complex characters by the main result of [3]. Thus \(D \) must be elementary abelian. But in this case we obtain a contradiction using the results in [7].

The remainder of this paper consists of a proof of the theorem. Let \(A \) be a symmetric split local algebra over a field \(F \) and denote by \(Z \) the center and by \(J \) the radical of \(A \). We may and do assume that \(F \) is algebraically closed. For a subset \(X \) of \(A \), we denote by \(FX \) the linear subspace of \(A \) spanned by \(X \). The subspace \(K := F\{[x, y] : x, y \in A\} \) will be particularly important for us. Since \(A = F1 + J \) we have \(K = [J, J] \subset J^2 \). We fix a linear map \(\lambda : A \to F \) the kernel of which contains \(K \) but no nonzero ideal of \(A \). Then 0 is the only ideal of \(A \) contained in \(K \). For any linear subspace \(U \) of \(A \), \(U^\perp := \{a \in A : \lambda(aU) = 0\} \) is a linear subspace of \(A \) such that \(\dim A = \dim U + \dim U^\perp \) and \((U^\perp)^\perp = U \). We have \(Z^\perp = K \) (see [5]); in particular, \(\dim Z = \dim A/K \). Moreover,

\[I^\perp = \{a \in A : aI = 0\} = \{a \in A : Ia = 0\} \]

for any ideal \(I \) of \(A \); in particular, \(I^\perp \) is an ideal of \(A \). Furthermore, \(\dim J^\perp = \dim A/J = 1 \). Hence, if \(J^n = 0 \) for some positive integer \(n \) then \(J^{n-1} \subset J^\perp \); in particular, \(\dim J^{n-1} \leq \dim J^\perp = 1 \). We will often use this fact without special reference.

1. Preliminary results

From now on we suppose that \(\dim Z = 5 \). We may and will assume that \(\dim A \geq 6 \); for otherwise we are done.

(1.1) Lemma. We have \(\dim A \geq 8 \).

Proof. Assume that \(\dim A \leq 7 \). Then there are elements \(a, b \in A \) such that \(A = Z + Fa + Fb \). Therefore \(K = F[a, b] \); in particular, \(\dim K \cap Z \leq \dim K \leq 1 \). Now Lemma D in [6] implies that \(A \) is commutative, so \(\dim A = \dim Z = 5 \), a contradiction.

If \(\dim A = 8 \), then the theorem is proved, so we may and will assume that \(\dim A \geq 9 \). We are then looking for a contradiction.

(1.2) Lemma. We have \(\dim A/K + J^3 = 4 \), and one of the following occurs:

- \(\dim J/J^2 = 2 \), \(\dim J^2/J^3 = 2 \), \(\dim J^3/J^4 \geq 2 \), \(\dim J^4/J^5 \geq 1 \), \(K + J^3 = K + J^4 \).
(1.4) $\dim J/J^2 = 3$, $\dim J^2/J^3 = 2$, $\dim J^3/J^4 \geq 2$, $\dim J^4/J^5 \geq 1$, $J^2 = K + J^3 = K + J^4$.

(1.5) $\dim J/J^2 = 3$, $\dim J^2/J^3 = 3$, $\dim J^3/J^4 \geq 2$, $\dim J^4/J^5 \geq 1$, $J^2 = K + J^3 = K + J^4$.

Proof. Since $\dim J \geq 8$ we have $J^2 \neq 0$. Thus Nakayama’s Lemma implies that $J^2 \neq J^3$. Furthermore, $J \not\subseteq Z$, so $\dim J^2/J^3 \geq 2$ by Lemma G in [6]; in particular, $\dim J/J^2 \geq 2$ by Lemma E in [6], and $J^3 \neq 0$. Hence $J^3 \neq J^4$ by Nakayama’s Lemma, and $J^3 \not\subseteq K$. Thus

$$\dim A/J^2 \leq \dim A/K + J^3 < \dim A/K = \dim Z = 5;$$

in particular, $\dim J/J^2 \in \{2, 3\}$, so $\dim J^2 \geq 5$. This means that $J^2 \not\subseteq Z$ which implies by Lemma G in [6] that $\dim J^3/J^4 \geq 2$. Hence $J^4 \neq 0$, and $J^4 \neq J^5$ by Nakayama’s Lemma again. Moreover, $J^4 \not\subseteq K$, so $\dim A/K + J^3 \leq \dim A/K + J^4 < \dim A/K = 5$.

Suppose first that $\dim J/J^2 = 2$ and write $J = F\{a, b\} + J^2$ with elements $a, b \in J$. Then $A = F\{1, a, b\} + J^2$ and $K \subseteq F\{a, b\} + J^3$; in particular, $\dim K + J^3/J^4 \leq 1$, so $\dim A/J^3 \leq 5$ and $\dim J^2/J^3 = 2$. Thus $\dim A/J^3 = 5$ and $\dim A/K + J^3 = 4$. Hence also $\dim A/K + J^4 = 4$.

Finally, suppose that $\dim J/J^2 = 3$ and write $J = F\{a, b, c\} + J^2$ with elements $a, b, c \in J$. Then $K \subseteq F\{a, b\}, [a, c], [b, c]\} + J^3$; in particular, $\dim K + J^3/J^4 \leq 3$. Thus $\dim A/J^3 \leq 7$ and $\dim J^2/J^3 \in \{2, 3\}$. Since $4 = \dim A/J^2 \leq \dim A/K + J^3 \leq \dim A/K + J^4 \leq 4$ the result follows.

We will deal with these cases in §§2, 3 and 4, respectively. The following results will be useful later on.

(1.6) Lemma. There is an element $x \in J$ such that $x^2 \not\in J^3$.

Proof. By (1.2) we have $\dim J/J^2 \leq 3$. We write $J = F\{a, b, c\} + J^2$ with elements $a, b, c \in J$. If $x^2 \in J^3$ for $x \in J$ then $ab + ba = (a+b)^2 - a^2 - b^2 \in J^3$. Thus $a = a - b (mod J^3)$. Similarly, $c = c - a (mod J^3)$ and $b = c - (-bc) (mod J^3)$. Therefore $J^2 = F\{a^2, ab, ac, ba, b^2, bc, ca, cb, c^2\} + J^3 = F\{ab, ac, bc\} + J^3$;

in particular, $\dim J^2/J^3 \leq 3$. Now we apply Lemma E in [6] to obtain $J^3 = F\{a^2b, a^2c, abc, bab, bac, b^2c\} + J^4 = Fabc + J^4$ and $J^4 = F a^2b c + J^5 = J^5$ contradicting (1.2).

(1.7) Lemma. There are elements $a, b \in J$ such that $a^2 + J^3, ab + J^3$ or $a^2 + J^3, ba + J^3$ are linearly independent in J^2/J^3.

Proof. By (1.6), there is an element $a \in J$ such that $a^2 \not\in J^3$; in particular, $a \not\in J^2$. By (1.2) there are therefore elements $b, c \in J$ such that $J = F\{a, b, c\} + J^2$. We may assume that $ab, ba, ac, ca \in F a^2 + J^3$; for otherwise the result is proved. Then $K + J^3 = F\{a, b\}, [a, c], [b, c]\} + J^3 \subseteq F\{a^2, [b, c]\} + J^3$; in particular, $\dim K + J^3/J^3 \leq 2$. Hence, by (1.2), $\dim J^2/J^3 = 2$.

Now consider the case where $b^2 \not\in F a^2 + J^3$; in particular, $b^2 \not\in J^3$. Then we can interchange the roles of a and b and therefore assume that
ab, ba, bc, cb ∈ Fb^2 + J^3. Since a^2 + J^3 and b^2 + J^3 form a basis of J^2/J^3 this implies that ab, ba ∈ J^3. Thus (a + b)^2 + J^3 = a^2 + b^2 + J^3 and (a + b)b + J^3 = b^2 + J^3 are linearly independent, and the result follows in this case.

Therefore we may also assume that b^2 ∈ Fa^2 + J^3 and, similarly, c^2 ∈ Fa^2 + J^3. Then

J^2 = F\{a^2, ab, ac, ba, b^2, bc, ca, cb, c^2\} + J^3 = F\{a^2, bc, cb\} + J^3.

Thus J^2 = F\{a^2, bc\} + J^3 or J^2 = F\{a^2, cb\} + J^3; we may assume that J^2 = F\{a^2, bc\} + J^3. Then Lemma E in [6] implies that

J^3 = F\{a^3, abc, ba^2, b^2c\} + J^4 = F\{a^3, a^2c\} + J^4 = Fa^3 + J^4;

in particular, dim J^3/J^4 ≤ 1 contradicting (1.2).

We now choose elements a, b ∈ J as in (1.7). By symmetry we may assume that ab ∈ Fa^2 + J^3; in particular, a ∈ J^2 and b ∈ Fa + J^2. Thus a + J^2, b + J^2 are linearly independent in J/J^2. By (1.2), we can find an element c ∈ J such that J = F\{a, b, c\} + J^2.

2. THE CASE (1.3)

In this section we use the same hypothesis and notation as before, but we assume in addition that (1.3) holds. Then J = Fa + Fb + J^2 and J^2 = Fa^2 + Fab + J^3. Thus Lemma E in [6] implies that J^3 = Fa^2 + Fa^2b + J^4, J^4 = Fa^4 + Fa^3b + J^5 and J^5 = Fa^5 + Fa^4b + J^6; in particular, dim J^3/J^4 = 2. Thus a^3 + J^4 and a^2b + J^4 form a basis of J^3/J^4. Moreover, dim J^4 ≥ 2; in particular, J^5 ≠ 0. Thus J^5 ⊈ K and 4 = dim A/K + J^4 ≤ dim A/K + J^5 < dim A/K = dim Z = 5 by (1.2). We conclude that dim A/K + J^5 = 4.

Furthermore, A = F\{1, a, b, a^2, ab, a^3, a^2b\} + J^4, so

K ⊂ F\{[a, b], [a, ab], [a, a^2b], [b, a^2], [b, ab], [b, a^3], [b, a^2b], [a^2, ab]\} + J^5.

Since J^2 = F\{a^2, ab, a^3, a^2b\} + J^4 there are elements α_i, β_i, γ_i, δ_i ∈ F (i = 1, 2) such that

\[ba ≡ α_1 a^2 + β_1 ab + γ_1 a^3 + δ_1 a^2 b \pmod{J^4}, \]

\[b^2 ≡ α_2 a^2 + β_2 ab + γ_2 a^3 + δ_2 a^2 b \pmod{J^4}. \]

We have to distinguish between two cases.

Case 1. β_1 ≠ 1. In this case we set ζ := α_1/(1 − β_1) and b' := b − ζa. Then J = Fa + Fb' + J^2, J^2 = Fa^2 + Fab' + J^3 and

\[b' a ≡ ba - ζ a^2 ≡ (α_1 - ζ) a^2 + β_1 ab \]

\[≡ (α_1 - ζ + β_1 ζ) a^2 + β_1 ab' ≡ β_1 ab' \pmod{J^3}. \]

Thus we may replace b by b' and therefore assume that α_1 = 0. Then

\[0 ≡ (b^2) a - b(ba) ≡ α_2 a^3 + β_2 a^2 b - β_1 bab ≡ α_2 a^3 + β_1 β_2 a^2 b - β_1^2 ab^2 \]

\[≡ (α_2 - α_2 β_1^2) a^3 + (β_1 β_2 - β_1^2 β_2) a^2 b \pmod{J^4}. \]
and, similarly,
\[0 \equiv (b^2)b - b(b^2) \equiv (\alpha_2\beta_2 - \alpha_2\beta_1\beta_2)a^3 + (\alpha_2 + \beta_2^2 - \alpha_2\beta_1^2 - \beta_1\beta_2^2)a^2b \pmod{J^4}. \]

Since \(a^3 + J^4 \) and \(a^2b + J^4 \) form a basis of \(J^3/J^4 \) we conclude that
\[
(2.1) \quad 0 = \alpha_2 - \alpha_2\beta_1^2, \quad (2.2) \quad 0 = \beta_1\beta_2 - \beta_1^2\beta_2, \\
(2.3) \quad 0 = \alpha_2\beta_2 - \alpha_2\beta_1\beta_2, \quad (2.4) \quad 0 = \alpha_2 + \beta_2^2 - \alpha_2\beta_1^2 - \beta_1\beta_2^2.
\]

Subtracting (2.1) from (2.4) we obtain \(\beta_2^2 = \beta_1\beta_2^2 \). Since \(\beta_1 \neq 1 \) this implies \(\beta_2 = 0 \). From (2.1) we also conclude that \(\alpha_2 = 0 \) or \(\beta_1^2 = 1 \). We assume first that \(\alpha_2 = 0 \). Then
\[
[a, ab] = a^2b - aba \equiv (1 - \beta_1)a^2b \pmod{J^4}, \\
[b, a^2] = ba^2 - a^2b \equiv \beta_1aba - a^2b \equiv (\beta_1^2 - 1)a^2b \pmod{J^4}, \\
[b, ab] = bab - ab^2 \equiv \beta_1ab^2 \equiv 0 \pmod{J^4}.
\]

This shows that \(K \subset F[a, b] + Fa^2b + J^4 \); in particular, \(\dim K + J^4/J^4 \leq 2 \). Thus \(\dim A/J^4 \leq 6 \) by (1.2), a contradiction.

Hence we must have \(\alpha_2 \neq 0 \) and \(\beta_1^2 = 1 \). Since \(\beta_1 \neq 1 \) this implies \(\beta_1 = -1 \) and \(\text{char } F \neq 2 \). It is now easy to check that
\[
[a, a^2b] = 2a^3b \pmod{J^5}, \quad [b, a^2] = -2\delta_1a^3b \pmod{J^5}, \\
[b, a^3] = -2a^3b \pmod{J^5}, \quad [b, a^2b] = [a^2, ab] = 0 \pmod{J^5}.
\]

Thus \(K \subset F\{[a, b], [a, ab], [b, ab], a^3b\} + J^5 \); in particular, \(\dim K + J^5/J^5 \leq 4 \). Hence \(\dim A/J^5 \leq 8 \) and \(\dim J^4/J^5 = 1 \). By Lemma G in [6], this implies that \(J^3 \subset Z \); in particular, \(a^2b \in Z \). Thus \(a^3b \equiv a^2ba \equiv -a^3b \pmod{J^5} \). Since \(\text{char } F \neq 2 \) this implies \(a^3b \in J^5 \). Therefore
\[
K \subset F\{[a, b], [a, ab], [b, ab]\} + J^5;
\]
in particular, \(\dim K + J^5/J^5 \leq 3 \). Hence \(\dim A/J^5 \leq 7 \), a contradiction.

Case 2. \(\beta_1 = 1 \). Assume first that \(\alpha_1 = 0 \). Then \([a, b] \in J^3 \) and \(K \subset J^3 \), so \(\dim A/K + J^3 = \dim A/J^3 = 5 \) contradicting (1.2). Thus we must have \(\alpha_1 \neq 0 \).

Now we set \(a' := \alpha_1a \). Then \(J = Fa' + Fb + J^2 \), \(J^2 = F(a')^2 + Fa'b + J^3 \) and
\[
ba' \equiv \alpha_1ba \equiv \alpha_1^2a^2 + \alpha_1ab \equiv (a')^2 + a'b \pmod{J^3}.
\]

Hence we may replace \(a \) by \(a' \) and therefore assume that \(\alpha_1 = 1 \). As in Case 1 we compute
\[
0 \equiv (b^2)a - b(ba) \equiv (\beta_2 - 2)a^3 - 2a^2b \pmod{J^4}.
\]

Since \(a^3 + J^4 \) and \(a^2b + J^4 \) form a basis of \(J^3/J^4 \) this implies that \(\text{char } F = 2 \) and \(\beta_2 = 0 \). Hence
\[
[a, a^2b] = a^4 \pmod{J^5}, \quad [b, a^2] = \delta_1a^4 \pmod{J^5}, \\
[b, a^3] = a^4 \pmod{J^5}, \quad [b, a^2b] = [a^2, ab] \equiv 0 \pmod{J^5}.
\]

Therefore \(K \subset F\{[a, b], [a, ab], [b, ab], a^4\} + J^5 \); in particular, \(\dim K + J^5/J^5 \leq 4 \). Hence \(\dim A/J^5 \leq 8 \) and \(\dim J^4/J^5 = 1 \). By Lemma G in [6], this implies that \(J^3 \subset Z \); in particular, \(a^2b \in Z \). Thus \(a^3b \equiv a^2ba \equiv a^4 + a^3b \pmod{J^5} \).
(mod \(J^5\)). Therefore \(a^4 \in J^5\) and \(J^5 = Fa^5 + Fa^4b + J^6 = J^6\). Hence \(J^5 = 0\) by Nakayama's Lemma, a contradiction.

3. The case (1.4)

In this section we assume hypothesis and notation from §1. In addition, we assume that (1.4) holds. Then \(J^2 = Fa^2 + Fab + J^3\) and \(J^3 = Fa^3 + Fa^2b + J^4\) by Lemma E in [6]; in particular, \(\dim J^3/J^4 = 2\). Hence \(a^3 + J^4, a^2b + J^4\) form a basis of \(J^3/J^4\). There are elements \(\alpha, \beta \in F\) such that \(ac \equiv \alpha a^2 + \beta ab \pmod{J^3}\). Setting \(c' := c - \alpha a - \beta b\) we then have \(J = F[a, b, c'] + J^2\) and \(ac' \equiv ac - \alpha a^2 - \beta ab \equiv 0 \pmod{J^3}\). Hence we may replace \(c\) by \(c'\) and therefore assume that \(ac \in J^3\). We choose elements \(\alpha_i, \beta_i \in F\) \((i = 1, 2, 3, 4)\) such that

\[
bc \equiv \alpha_1 a^2 + \beta_1 ab \pmod{J^3}, \quad ca \equiv \alpha_2 a^2 + \beta_2 ab \pmod{J^3}, \\
\]

\[
\alpha_3 a^2 + \beta_3 ab \pmod{J^3}, \quad c^2 \equiv \alpha_4 a^2 + \beta_4 ab \pmod{J^3}.
\]

Then

\[
0 \equiv (ac)a \equiv a(ca) = a_2a^3 + \beta_2 a^2b \pmod{J^4},
\]

\[
0 \equiv (ac)b \equiv a(cb) = a_3a^3 + \beta_3 a^2b \pmod{J^4},
\]

\[
0 \equiv (ac)c \equiv a(c^2) = a_4a^3 + \beta_4 a^2b \pmod{J^4}.
\]

Hence \(a_2^2 = \beta_2 = a_3 = \beta_3 = a_4 = \beta_4 = 0\); in particular, \(ca, cb, c^2 \in J^3\). Thus

\[
0 \equiv b(c^2) \equiv (bc)c \equiv a_1a^2\beta + \beta_1 a_2bc \equiv a_1\beta_1 a^3 + \beta_1^2 a^2b \pmod{J^4},
\]

and we obtain \(\beta_1 = 0\). Thus \(0 \equiv b(cb) \equiv (bc)b \equiv a_1 a^2b \pmod{J^4}\). Therefore \(a_1 = 0\); in particular, \(bc \in J^3\). Thus \([a, c], [b, c] \in J^3\) and \(K \subset F[[a, b], [a, c], [b, c]] + J^3 \subset F[a, b] + J^3\); in particular, \(\dim K + J^3/J^3 \leq 1\). Thus \(\dim A/J^3 \leq 5\) by (1.2), a contradiction.

4. The case (1.5)

In this section we assume hypothesis and notation from §1. In addition, we assume that (1.5) holds. Since \(J = F[a, b, c] + J^2\) we have \(J^2 = F[a^2, ab, ac, ba, b^2, bc, ca, cb, c^2] + J^3\). Since \(\dim J^2/J^3 = 3\) we must have \(J^2 = F[a^2, ab, d] + J^3\) for some element \(d \in \{ac, ba, b^2, bc, ca, cb, c^2\}\). Since \(J^2 = K + J^4\) we obtain

\[
J^2 = F[[a, b], [a, c], [a, ab], [a, d], [b, c], [b, a^2], [b, ab], [b, d], [c, a^2], [c, ab], [c, d]] + J^4.
\]

We choose elements \(\alpha_i, \beta_i, \gamma_i \in F\) \((i = 1, 2, \ldots, 7)\) such that

\[
ac \equiv \alpha_1 a^2 + \beta_1 ab + \gamma_1 d \pmod{J^3}, \quad ba \equiv \alpha_2 a^2 + \beta_2 ab + \gamma_2 d \pmod{J^3},
\]

\[
b^2 \equiv \alpha_3 a^2 + \beta_3 ab + \gamma_3 d \pmod{J^3}, \quad bc \equiv \alpha_4 a^2 + \beta_4 ab + \gamma_4 d \pmod{J^3},
\]

\[
ca \equiv \alpha_5 a^2 + \beta_5 ab + \gamma_5 d \pmod{J^3}, \quad cb \equiv \alpha_6 a^2 + \beta_6 ab + \gamma_6 d \pmod{J^3},
\]

\[
c^2 \equiv \alpha_7 a^2 + \beta_7 ab + \gamma_7 d \pmod{J^3}.
\]

(4.1) Lemma. We may assume that \(d = ac\) or \(d = ba\).

Proof. Case 1. \(d = ac\). In this case there is nothing to prove.
Case 2. $d = ba$. In this case there is nothing to prove either.

Case 3. $d = b^2$. In this case we may assume that $ba \in Fa^2 + Fab + J^3$; for otherwise we are in Case 2. Similarly, we may assume that $ba \in Fb^2 + Fab + J^3$; for otherwise we interchange a and b and are in Case 2 again. Hence $ba \in Fab + J^3$, and we may write $ba \equiv \alpha ab \pmod{J^3}$ for some element $\alpha \in F$.

Now we set $b' := a + b$. Then we have
\[
ab' = a^2 + ab, \quad (b')^2 \equiv a^2 + (1 + \alpha)ab + b^2 \pmod{J^3};
\]
in particular, $J = F\{a, b', c\} + J^2$ and $J^2 = F\{a^2, ab', (b')^2\} + J^3$. Hence we may similarly assume that $b' a \in Fab' + J^3$. We write $b' a \equiv \beta ab'$ (mod J^3) with some element $\beta \in F$. Then
\[
\beta a^2 + \beta ab \equiv \beta ab' \equiv b' a \equiv (a + b)a \equiv a^2 + ba \equiv a^2 + \alpha ab \pmod{J^3}.
\]
Since $a^2 + J^3$ and $ab + J^3$ are linearly independent this means that $\alpha = \beta = 1$; in particular, $[a, b] \in J^3$, and $J^2 = F[a, c] + F[b, c] + J^3$ contradicting the fact that $\dim J^2/J^3 = 3$.

Case 4. $d = bc$. In this case we may assume that $ac, ba, b^2 \in Fa^2 + Fab + J^3$; for otherwise we are in Cases 1, 2 or 3 again. Then we replace c by $c - \alpha x a - \beta x b$ and may therefore assume that $0 = \alpha x = \beta x$. Moreover, we may assume that $a^2 + J^3, ab + J^3, bc + J^3$ form a basis of J^2/J^3 this implies that
\[
0 \equiv \begin{vmatrix} 1 + \alpha_x & \beta_x & 0 \\ \alpha_3 x & 1 + \beta_3 x & 0 \\ 0 & 0 & \xi \end{vmatrix} = \xi + (\alpha x + \beta x)\xi^2 + (\alpha_3 x - \beta_3 x)\xi^3
\]
for $\xi \in F$. Since F is infinite this is impossible.

Case 5. $d = ca$, i.e., $\alpha_3 = \beta_3 = 0, \gamma_3 = 1$. We may assume that $\gamma_i = 0$ for $i = 1, 2, 3, 4$; for otherwise we are in Cases 1, 2, 3, 4, respectively. Then we replace c by $c - \alpha a - \beta b$ and may therefore assume that $0 = \alpha x = \beta x$. Moreover, $\beta_2 = 0$; for otherwise we are in Case 1. Similarly, we may assume that $\alpha_3 = 0$; for otherwise we interchange a and b and are then in Case 4 for the opposite algebra of A. Now we replace b by $b - \gamma_6 a$ and may then assume that $\gamma_6 = 0$. Furthermore, we may assume that $\gamma_7 = 0$; for otherwise we replace (a, b, c) by (b, c, a) and are then in Case 4 again. Finally, we may assume that $\beta_7 = 0$; for otherwise we interchange b and c and are then in Case 3 for the opposite algebra of A. As in Case 4, we may assume
\[
J^2 \neq F\{((\xi a + \eta b + c)a, (\xi a + \eta b + c)b, (\xi a + \eta b + c)c) + J^3
= F\{(\xi + \alpha_2 \eta)a^2 + ca, \alpha_6 a^2 + (\xi + \beta_3 \eta + \beta_6)ab,
\alpha_4 \eta a^2 + \beta_4 \eta ab + \gamma_6 ca\} + J^3
\]
for $\xi, \eta \in F$. Since $a^2 + J^3, ab + J^3, ca + J^3$ form a basis of J^2/J^3 we may compute the corresponding determinant and obtain
\[
0 = \gamma_6 \xi^2 + (\beta_3 \gamma_7 + \alpha_4 \beta_7 - \alpha_4 \xi)\xi + \beta_6 \gamma_6 \xi + (\alpha_2 \beta_3 \gamma_7 - \alpha_4 \beta_6)\xi^2
+ (\alpha_2 \beta_6 \gamma_7 + \alpha_6 \beta_4 - \alpha_4 \beta_6)\eta
\]
for \(\xi, \eta \in F \). Since \(F \) is infinite this implies that all coefficients on the right-hand side vanish; in particular, \(0 = \gamma_7 = \alpha_4 \). Then, similarly, we may assume that

\[
J^2 \neq F \{ a(a + \eta b + c), b(a + \eta b + c), c(a + \eta b + c) \} + J^3
\]

\[
= F \{ a^2 + \eta ab, \alpha_2 a^2 + (\beta_3 \eta + \beta_4)ab, \alpha_6 \eta a^2 + \beta_6 \eta ab + ca \} + J^3
\]

for \(\eta \in F \). Computing the corresponding determinant we obtain \(0 = (\beta_3 - \alpha_2) \eta + \beta_4 \) for \(\eta \in F \). As before this implies that \(\beta_3 = \alpha_2 \) and \(\beta_4 = 0 \). Finally, we may assume that

\[
J^2 \neq F \{ (\xi a + b + c)^2; (\xi a + b + c)a, a(\xi a + b + c) \} + J^3
\]

\[
= F \{(\xi^2 + \alpha_2 \xi + \alpha_6)a^2 + (\xi + \alpha_2 + \beta_6)ab + \xi ca,
(\xi + \alpha_2)a^2 + ca, \xi a^2 + ab \} + J^3
\]

for \(\xi \in F \); for otherwise we replace \((a, b)\) by \((\xi a + b + c, a)\) and are in Case 2 again. Computing the corresponding determinant we obtain \(0 = \xi^2 + (\alpha_2 + \beta_6)\xi - \alpha_6 \) for \(\xi \in F \) which is impossible.

Case 6. \(d = cb \), i.e. \(\alpha_6 = \beta_6 = 0, \gamma_6 = 1 \). We may assume that \(\gamma_i = 0 \) for \(i = 1, 2, \ldots, 5 \); for otherwise we are in Cases 1, 2, \ldots, 5, respectively. Then we replace \(c \) by \(c - \alpha_1 a - \beta_1 b \) and may therefore assume that \(0 = \alpha_1 = \beta_1 \). We may also assume that \(\beta_2 = 0 \); for otherwise we are in Case 4 for the opposite algebra of \(A \). Similarly, we may assume that \(\alpha_3 = 0 \); for otherwise we interchange \(a \) and \(b \) and are then in Case 1. As in the previous cases we may assume

\[
J^2 \neq F \{ (\xi a + \eta b + c)a, (\xi a + \eta b + c)b, (\xi a + \eta b + c)c \} + J^3
\]

\[
= F \{ (\xi + \alpha_2 \eta + \alpha_5)a^2 + \beta_5 ab, (\xi + \beta_3 \eta)ab + cb,
(\alpha_4 \eta + \alpha_7)a^2 + (\beta_4 \eta + \beta_7)ab + \gamma_7 cb \} + J^3
\]

for \(\xi, \eta \in F \). We work out the corresponding determinant and obtain

\[
0 = \gamma_7 \xi^2 + (\beta_3 \gamma_7 + \alpha_2 \gamma_7 - \beta_4)\xi \eta + (\alpha_5 \gamma_7 - \beta_7)\xi + (\alpha_2 \beta_3 \gamma_7 - \alpha_2 \beta_4)\eta^2
\]

\[
+ (\alpha_5 \beta_3 \gamma_7 - \alpha_2 \beta_7 - \alpha_5 \beta_4 + \alpha_4 \beta_5)\eta + (\alpha_7 \beta_5 - \alpha_5 \beta_7)
\]

for \(\xi, \eta \in F \). Therefore all coefficients on the right-hand side vanish; in particular, \(0 = \gamma_7 = \beta_4 = \beta_7 \). Similarly, we have

\[
J^2 \neq F \{ a(\xi a + b + c), b(\xi a + b + c), c(\xi a + b + c) \} + J^3
\]

\[
= F \{ a^2 + ab, (\alpha_2 \xi + \alpha_4)a^2 + \beta_3 ab, (\alpha_5 \xi + \alpha_7)a^2 + \beta_5 \xi ab + cb \} + J^3
\]

for \(\xi \in F \). Computing the corresponding determinant we obtain \(0 = (\beta_3 - \alpha_2)\xi - \alpha_4 \) for \(\xi \in F \) which again implies that \(\beta_3 = \alpha_2 \) and \(\alpha_4 = 0 \). We may also assume that

\[
J^2 \neq F \{ (\xi a + \eta b + c)^2; (\xi a + \eta b + c)a, a(\xi a + \eta b + c) \} + J^3
\]

\[
= F \{(\xi^2 + \alpha_2 \xi + \alpha_5 \xi + \alpha_7)a^2 + (\xi \eta + \beta_5 \xi + \alpha_2 \eta^2)ab + \eta cb,
(\xi + \alpha_2 \eta + \alpha_5)a^2 + \beta_5 ab, \xi a^2 + \eta ab \} + J^3
\]

for \(\xi, \eta \in F \); for otherwise we replace \((a, b, c)\) by \((\xi a + \eta b + c, a, b)\) and are then in Case 2 again. Working out the corresponding determinant we obtain \(0 = \xi \eta^2 + \alpha_2 \eta^3 - \beta_3 \xi \eta + \alpha_5 \eta^2 \) for \(\xi, \eta \in F \) which is impossible.
Case 7. $d = c^2$. In this case we may assume that $ac, ba, b^2, bc, ca, cb \in Fa^2 + Fab + J^3$; for otherwise we are in Cases 1, 2, \ldots, 6, respectively. Then $J^2 = F\{[a, b], [a, c], [b, c]\} + J^3 \subset Fa^2 + Fab + J^3$; in particular, $\dim J^2/J^3 \leq 2$ contradicting (1.5).

(4.2) Lemma. We may assume that $d = ac$.

Proof. We assume the contrary. Then we may assume that $d = ba$, by (4.1); in particular, $a_2 = b_2 = 0, g_2 = 1$. We have $g_1 = 0$. After replacing c by $c - a_1a - b_1b$ we may even assume $0 = a_1 = b_1$. Similarly, we may assume $b_5 = 0$. Moreover, after replacing b by $b - g_3a$ we may also assume that $g_3 = 0$. We then have

$$J^2 \not= (\xi a + \eta b + \zeta c)J + J^3$$

$$= F\{(\xi a + \eta b + \zeta c)a, (\xi a + \eta b + \zeta c)b, (\xi a + \eta b + \zeta c)c\} + J^3$$

$$= F\{(\xi + a_5\zeta)a^2 + (\eta + g_5\zeta)ab, (a_3\eta + a_6\zeta)a^2 + (\xi + b_3\eta + b_6\zeta)ab$$

$$+ g_5\zeta ba, (a_4\eta + a_7\zeta)a^2 + (b_4\eta + b_7\zeta)ab + (g_4\eta + g_7\zeta)ba\} + J^3$$

for $\xi, \eta, \zeta \in F$. Since $a^2 + J^3, ab + J^3, ba + J^3$ form a basis of J^2/J^3 this implies that

$$0 = \begin{vmatrix}
\xi + a_5\zeta & 0 & \eta + g_5\zeta \\
0 & \xi + a_5\zeta & \eta + g_5\zeta \\
a_3\eta + a_6\zeta & (a_4\eta + a_7\zeta)a^2 + (b_4\eta + b_7\zeta)ab + (g_4\eta + g_7\zeta)ba
\end{vmatrix}$$

$$= g_4\zeta^2\eta + g_7\zeta^2\xi + (b_3\eta - a_4\xi)\eta^2$$

$$+ (b_3\eta + b_6\eta + a_5\zeta - b_4\xi - a_7 - a_4\eta)\xi\eta$$

$$+ (b_6\eta + a_5\zeta - b_7\zeta - a_7\eta)\xi^2 + (a_3\beta_4 - a_4\beta_3)\eta^3$$

$$+ (a_5\beta_3\eta + a_3\beta_7 + a_6\beta_4 + a_4\beta_5\eta - a_4\beta_6 - a_7\beta_3 - a_4\beta_3\eta)\xi^2$$

$$+ (a_5\beta_3\eta + a_5\beta_6\eta - a_5\beta_6\xi + a_6\beta_7 + a_3\beta_7\eta + a_6\beta_4\xi$$

$$- a_7\beta_6 - a_4\beta_6\eta - a_7\beta_3\eta)\eta^2$$

$$+ (a_5\beta_6\eta - a_5\beta_7\eta + a_6\beta_7\eta - a_3\beta_6\zeta)\zeta^3$$

for $\xi, \eta, \zeta \in F$. Since F is infinite this implies that all coefficients on the right-hand side have to vanish; in particular, $0 = \gamma_4 = \gamma_7 = a_4 = a_3 \beta_4$ and $a_7 = -b_4\gamma_6$. Then, similarly, we have

$$J^2 \not= F\{a(\xi a + \eta b + \zeta c), b(\xi a + \eta b + \zeta c), c(\xi a + \eta b + \zeta c)\} + J^3$$

$$= F\{\alpha a^2 + \gamma ab, a_3\eta a^2 + (b_3\eta + b_4\zeta)ab + \xi ba,$$

$$(a_5\xi + a_6\eta + a_7\zeta)a^2 + (b_6\eta + b_7\zeta)ab + (g_5\xi + g_6\eta)ba\} + J^3$$

for $\xi, \eta, \zeta \in F$. As before, we work out the corresponding determinant and obtain

$$0 = (b_3\gamma_5 - b_6 + a_5)\xi^2\eta + (b_4\gamma_5 - b_7)\xi^2\zeta + (b_3\gamma_6 - a_3\gamma_5 + a_6)\eta^2 - a_3\gamma_6\eta^3$$

for $\xi, \eta, \zeta \in F$. Again, this implies that $b_6 = b_3\gamma_5 + a_5, b_7 = b_4\gamma_5, a_6 = a_3\gamma_5 - b_3\gamma_6, 0 = a_3\gamma_6$. On the other hand,

$$J^2 = F\{[a, b], [a, c], [b, c]\} + J^3$$

$$= F\{ab - ba, a_5a^2 + g_5ba, (b_3\gamma_6 - a_3\gamma_5)a^2$$

$$+ (b_4 - a_5 - b_3\gamma_5)ab - b_6ba\} + J^3.$$
Since \(a^2 + J^3 \), \(ab + J^3 \) and \(ba + J^3 \) form a basis of \(J^2/J^3 \) a computation of the corresponding determinant yields
\[
0 \neq \alpha_5 \gamma_6 + \beta_3 \gamma_5 \gamma_6 - \alpha_3 \gamma_5^2 - \alpha_5 \beta_4 + \alpha_5^2 + \alpha_5 \beta_3 \gamma_5^5.
\]
Moreover, since \(J^2 = F\{a^2, ab, ba\} + J^3 \), Lemma E in [6] implies that \(J^3 = F\{a^3, a^2b, aba, ba^2, bab, b^2a\} + J^4 = F\{a^3, a^2b, aba, ba^2, bab\} + J^4 \).

Now we distinguish two cases.

Case 1. \(\alpha_5 \neq 0 \). In this case we replace \(a \) by \(\alpha_5 a \) and may then assume that \(\alpha_5 = 1 \).

Thus
\[
0 \equiv a(ca) - (ac)a \equiv a^3 + \gamma_5 aba \pmod{J^4},
\]
\[
0 \equiv b(ca) - (bc)a \equiv (\beta_3 \gamma_5 - \alpha_3 \gamma_5^2 - \beta_4)aba + ba^2 \pmod{J^4}.
\]

Now we distinguish two more cases.

Case 1.1. \(\beta_4 \neq 0 \). In this case we have \(\alpha_3 = 0 \) since \(0 = \alpha_3 \beta_4 \).

Moreover,
\[
0 \equiv (b^2)c - b(bc) \equiv \beta_3 \beta_4 a^2 b - \beta_4 aba \pmod{J^4},
\]
\[
0 \equiv a(c^2) - (ac)c \equiv \beta_4 \gamma_5 a^2 b + \beta_4 \gamma_5 b a b \pmod{J^4};
\]
in particular, \(J^3 = F a^2 b + F aba + J^4 \). Hence \(a^2 b + J^4 \) and \(aba + J^4 \) are linearly independent. Then \(\gamma_5 = 0 \), and we obtain the contradiction
\[
0 \equiv a(cb) - (ac)b \equiv a^2 b + \gamma_6 aba \pmod{J^4}.
\]

Case 1.2. \(\beta_4 = 0 \). Here we have to distinguish two more cases.

Case 1.2.1. \(\beta_3 \neq 0 \). In this case we replace \(b \) by \(\beta_3^{-1} b \) and may then assume that \(\beta_3 = 1 \).

Then
\[
0 \equiv (b^2)b - b(b^2) \equiv (1 + \alpha_3) a^2 b - \alpha_3 \gamma_5 aba - bab \pmod{J^4},
\]
\[
0 \equiv a(cb) - (ac)b \equiv (1 + \gamma_5) a^2 b + (\gamma_5 \gamma_6 - \alpha_3 \gamma_5^2 + \gamma_6) b a b \pmod{J^4};
\]
in particular, \(J^3 = F a^2 b + F aba + J^4 \). Thus \(a^2 b + J^4 \) and \(aba + J^4 \) are linearly independent. Then \(\gamma_5 = -1 \) and \(\alpha_3 = 0 \). But now we obtain the contradiction
\[
\alpha_5 \gamma_6 + \beta_3 \gamma_5 \gamma_6 - \alpha_3 \gamma_5^2 - \alpha_5 \beta_4 + \alpha_5^2 + \alpha_5 \beta_3 \gamma_5 = 0.
\]

Case 1.2.2. \(\beta_3 = 0 \). Here we have
\[
0 \equiv a(cb) - (ac)b \equiv a^2 b + (\gamma_6 - \alpha_3 \gamma_5^2) aba \pmod{J^4},
\]
\[
0 \equiv b(cb) - (bc)b \equiv \alpha_3^2 \gamma_5 aba + bab \pmod{J^4};
\]
in particular, \(J^3 = F aba + J^4 \), a contradiction.

Case 2. \(\alpha_5 = 0 \). Then
\[
0 \neq \alpha_5 \gamma_6 + \beta_3 \gamma_5 \gamma_6 - \alpha_3 \gamma_5^2 - \alpha_5 \beta_4 + \alpha_5^2 + \alpha_5 \beta_3 \gamma_5 = \beta_3 \gamma_5 \gamma_6 - \alpha_3 \gamma_5^2;
\]
in particular, \(\gamma_5 \neq 0 \). Now we replace \(b \) by \(\gamma_5 b \) and may therefore assume that \(\gamma_5 = 1 \).

Hence
\[
0 \equiv a(ca) - (ac)a \equiv aba \pmod{J^4}.
\]

We distinguish two more cases.
Case 2.1. $\alpha_3 \neq 0$. In this case $\beta_4 = \gamma_6 = 0$ since $0 = \alpha_3 \beta_4 = \alpha_3 \gamma_6$. We now replace a by $\sqrt{\alpha_3}a$ and may therefore assume that $\alpha_3 = 1$. Then

\[
0 \equiv b(ca) - (bc)a \equiv a^3 \pmod{J^4},
\]

\[
0 \equiv b(cb) - (bc)b \equiv ba^2 + \beta_3 bab \pmod{J^4},
\]

\[
0 \equiv a(cb) - (ac)b \equiv \beta_3 a^2 b \pmod{J^4},
\]

\[
0 \equiv (b^2)b - b(b^2) \equiv a^2 b \pmod{J^4};
\]

in particular, $J^3 = Fbab + J^4$, a contradiction.

Case 2.2. $\alpha_3 = 0$. In this case we have $0 \neq \beta_3 \gamma_6 - \alpha_3 = \beta_3 \gamma_6$, i.e. $\beta_3 \neq 0 \neq \gamma_6$. We now replace a by $\beta_3 a$ and may then assume that $\beta_3 = 1$. We compute

\[
0 \equiv a(cb) - (ac)b \equiv a^2 b - \gamma_6 a^3 \pmod{J^4},
\]

\[
0 \equiv (b^2)b - b(b^2) \equiv \gamma_6 a^3 - bab \pmod{J^4},
\]

\[
0 \equiv (bc)c - b(c^2) \equiv (\beta_4 \gamma_6 - \beta_4 \gamma_6)a^3 + \beta_4 \gamma_6 ba^2 \pmod{J^4};
\]

in particular, $J^3 = Fa^3 + Fba^2 + J^4$. Thus $a^3 + J^4$ and $ba^2 + J^4$ are linearly independent. Then $\beta_4 = 0$ since $\gamma_6 \neq 0$. But now we obtain the contradiction

\[
0 \equiv b(cb) - (bc)b \equiv \gamma_6 a^3 - \gamma_6 ba^2 \pmod{J^4}.
\]

In the remainder of this paper we may and will assume that $J^2 = F\{a^2, ab, ac\} + J^3$. Then $J^3 = F\{a^3, a^2b, a^2c\} + J^4$ and $J^4 = F\{a^4, a^3b, a^3c\} + J^5$ by Lemma E in [6]; in particular, $\dim J^3/J^4 \in \{2, 3\}$. Since $J^4 \neq J^5$ we have $a^3 \notin J^4$.

(4.3) Lemma. The elements a, b, c can be chosen such that one of the following holds:

(4.4) $0 = \alpha_2 = \beta_2 = \alpha_5$, $\gamma_2 = 1$, $\alpha_6 = \alpha_4 - 1$; $\beta_5 + \gamma_5 \neq 1$;

(4.5) $0 = \alpha_2 = \beta_2$, $\gamma_2 = \alpha_5 = 1$, $\gamma_5 = 1 - \beta_5$, $\beta_6 - \beta_4 + \gamma_6 - \gamma_4 \neq 0$;

(4.6) $0 = \alpha_2 = \gamma_2 = \alpha_5 = \beta_5$, $\gamma_5 = \beta_2 \neq 1$, $\alpha_4 = 1 \neq \alpha_6$.

Proof. We distinguish between two cases.

Case 1. $\gamma_2 \neq 0$. In this case we replace c by $\alpha_2 a + \beta_2 b + \gamma_2 c$ and may therefore assume that $0 = \alpha_2 = \beta_2$ and $\gamma_2 = 1$. Now we distinguish two more cases.

Case 1.1. $\beta_5 + \gamma_5 \neq 1$. In this case we set $\xi := \alpha_5/(\beta_5 + \gamma_5 - 1)$ and replace b by $b + \xi a$ and c by $c + \xi a$. Then we have $\alpha_5 = 0$. Hence

\[
J^2 = F\{[a, b], [a, c], [b, c]\} + J^3
= F\{ab - ac, \beta_5 ab + (\gamma_5 - 1)ac, (\alpha_5 - \alpha_6)a^2
+ (\beta_4 - \beta_6)ab + (\gamma_4 - \gamma_6)ac\} + J^3;
\]

in particular, $\alpha_4 \neq \alpha_6$. Now we replace a by $(\alpha_4 - \alpha_6)^{1/2}a$ and may then assume that $\alpha_6 = \alpha_4 - 1$.

Case 1.2. $\beta_5 + \gamma_5 = 1$. In this case we have

\[
J^2 = F\{[a, b], [a, c], [b, c]\} + J^3
= F\{ab - ac, \alpha_5 a^2 + \beta_5 ab - \beta_5 ac, (\alpha_4 - \alpha_6)a^2
+ (\beta_4 - \beta_6)ab + (\gamma_4 - \gamma_6)ac\} + J^3.
\]
Since \(a^2 + J^3, ab + J^3, ac + J^3\) form a basis of \(J^2/J^3\) we work out the corresponding determinant and obtain \(0 \neq \alpha_5(\beta_6 - \beta_4 + \gamma_6 - \gamma_4)\), so \(\beta_6 - \beta_4 + \gamma_6 - \gamma_4 \neq 0 \neq \alpha_5\). Then we replace \(a\) by \(\alpha_5a\) and may therefore assume that \(\alpha_5 = 1\).

Case 2. \(\gamma_2 = 0\). In this case we may assume that \(\beta_5 = 0\); for otherwise we interchange \(b\) and \(c\) and are then in Case 1 again. Similarly, we may assume that \(\gamma_5 = \beta_2\); otherwise we replace \(b\) by \(b + c\) and are then in Case 1 again. Hence

\[
J^2 = F\{[a,b], [a,c], [b,c]\} + J^3
\]

\[
= F\{\alpha_2a^2 + (\beta_2 - 1)ab, \alpha_5a^2 + (\beta_2 - 1)ac, (\alpha_4 - \alpha_6)a^2 + (\gamma_4 - \gamma_6)ab + (\gamma_4 - \gamma_6)ac\} + J^3.
\]

Since \(\dim J^2/J^3 = 3\) this implies that \(\beta_2 \neq 1\). Now we replace \(b\) by \(b + \alpha_2(\beta_2 - 1)^{-1}a\) and \(c\) by \(c + \alpha_5(\beta_2 - 1)^{-1}a\) and may then assume that \(0 = \alpha_2 = \alpha_5\). In this situation we have \(\alpha_4 \neq 0\) or \(\alpha_6 \neq 0\). If necessary, we interchange \(b\) and \(c\) and may then assume that \(\alpha_4 \neq 0\). Finally we replace \(b\) by \(\alpha_4^{-1}b\) and may therefore assume that \(\alpha_4 = 1\).

Now we treat the cases above separately.

Lemma. The case (4.4) does not occur.

Proof. We assume the contrary and distinguish two cases.

Case 1. \(\dim J^3/J^4 = 3\). In this case the elements \(a^3 + J^4, a^2b + J^4, a^2c + J^4\) form a basis of \(J^3/J^4\). Since

\[
0 \equiv (b^2)a - b(ba) \equiv (\alpha_3 - \alpha_7)a^3 + (\beta_5\gamma_3 - \beta_7)a^2b + (\beta_3 + \gamma_3\gamma_5 - \gamma_7)a^2c \quad (\text{mod } J^4)
\]

we conclude that \(\alpha_7 = \alpha_3\), \(\beta_7 = \beta_5\gamma_3\) and \(\gamma_7 = \beta_3 + \gamma_3\gamma_5\). Similarly, using the fact that \(0 = (bc)a - b(ca) + c(ba) - (cb)a + J^4\) we obtain \(\beta_5 = -1\), so \(\gamma_5 \neq 2\). This also shows that \(\gamma_6 = \beta_4 - \beta_6 + \gamma_4\) and \(0 = (2 - \gamma_5)(\beta_4 - \beta_6)\). Since \(\gamma_5 \neq 2\) this implies that \(\beta_4 = \beta_6\) and \(\gamma_6 = \gamma_4\). Then, using the fact that \(0 = (b^2)b - b(b^2) + J^4\) and \(0 = (bc)b - b(cb) + J^4\) we see that \(0 = (\alpha_3 - \alpha_4 + 1)(\beta_3 - \gamma_3) = (\alpha_3 - \alpha_4 + 1)(\beta_4 - \gamma_4)\). Now we distinguish two cases.

Case 1.1. \(\alpha_4 \neq \alpha_3 + 1\). Then \(\gamma_3 = \beta_3\) and \(\gamma_4 = \beta_4\). Moreover, the fact that \(0 = (bc)a - b(ca) + J^4\) implies that \(0 = \beta_3\gamma_5\). We distinguish two more cases.

Case 1.1.1. \(\gamma_5 \neq 0\), \(\beta_5 = 0\). In this case we use the fact that \(0 = (bc)b - b(cb) + J^4\) to obtain \(0 = \gamma_5(1 - \alpha_4)\), so \(\alpha_4 = 1\). But this leads to a contradiction using the fact that \(0 = (bc)b - b(cb) + J^4\) again.

Case 1.1.2. \(\gamma_5 = 0\). In this case we use the fact that \(0 = (bc)b - b(cb) + J^4\) to obtain \(2\alpha_4 = 1\); in particular, \(\text{char } F \neq 2\). Then we use the fact that \(0 = (bc)a - b(ca) + J^4\) to conclude that \(\beta_4 = 0\), we use the fact that \(0 = (c^2)a - c(ca) + J^4\) to see that \(\beta_3 = 0\), and we use the fact that \(0 = (bc)c - b(c^2) + J^4\) to show that \(\alpha_4 = 0\). But this contradicts the fact that \(0 = (bc)b - b(cb) + J^4\).

Case 1.2. \(\alpha_4 = \alpha_3 + 1\). In this case the fact that \(0 = (bc)a - b(ca) + J^4\) implies
that $0 = 2\alpha_3 + 1 - \alpha_3\gamma_5$. Thus
\[J^2 = F\{[a, b], [a, c], [b, c], [a, ab], [a, ac], [b, a^2], [b, ab], [b, ac], [c, a^2], [c, ab], [c, ac]\} + J^4 \]
\[\subset F\{[a, b], [a, c], [b, c], a^2b, a^2c\} + J^4 \]
as is easily checked. But this is a contradiction since $\dim J^2/J^4 = 6$.

Case 2. $\dim J^3/J^4 = 2$. Here we distinguish two more cases.

Case 2.1. $a^2b \in F a^3 + J^4$. In this case we have $J^3 = F\{a^3, a^2b, a^2c\} + J^4 = F\{a^3, a^2c\} + J^4$ and write $a^2b \equiv \delta a^3$ (mod J^4) with some element $\delta \in F$. Then $a^3c \equiv a^2ba \equiv \delta a^4$ (mod J^5), so $J^4 = F\{a^4, a^3c\} + J^5 = Fa^4 + J^5$. Since $J^4 \neq J^5$ this implies that $\dim J^4/J^5 = 1$. By Lemma G in [6], $J^3 \subset Z$; in particular, $a^2c \in Z$. Hence
\[0 \equiv (a^2c)a - a(a^2c) \equiv a^2(ca) - a^3c \equiv (\beta_5 + \gamma_5 - 1)\delta a^3 \pmod{J^4}. \]
Since $\beta_5 + \gamma_5 \neq 1$ and $a^3 \notin J^4$ we conclude that $\delta = 0$. But now
\[0 \equiv a^2(ba) - (a^2b)a \equiv \alpha_4a^4 \pmod{J^5}, \]
\[0 \equiv a^2(c) - (a^2c)b \equiv \alpha_5a^4 \pmod{J^5}, \]
\[0 \equiv (b^2)a - b(ba) \equiv (\alpha_3 - \alpha_7)a^3 + (\beta_3 + \gamma_3\gamma_5 - \gamma_7)a^2c \pmod{J^4}, \]
\[0 \equiv (ab)a - c(ba) \equiv (\alpha_4 - 1 - \alpha_4\beta_5 - \alpha_7\gamma_5)a^3 + (\alpha_5 + \gamma_5\gamma_6 - \beta_5\gamma_4 - \gamma_5\gamma_7)a^2c \pmod{J^4}. \]
This leads to the contradiction $0 = \alpha_4 = \alpha_3 = \alpha_7 = -1$.

Case 2.2. $a^2b \notin F a^3 + J^4$. Since $a^3 \notin J^4$ and $\dim J^3/J^4 = 2$ the elements $a^3 + J^4$ and $a^2b + J^4$ form a basis of J^3/J^4 in this case. We write $a^2c \equiv \delta a^3 + ea^2b$ (mod J^4) with elements $\delta, e \in F$. Since $J^4 = Fa^4 + Fa^3b + J^5$ and $J^4 \neq J^5$ we have $\dim J^4/J^5 \in \{1, 2\}$. Let us distinguish the corresponding cases.

Case 2.2.1. $\dim J^4/J^5 = 1$. In this case $J^3 \subset Z$ by Lemma G in [6]; in particular, $a^2b, a^2c \in Z$. Hence
\[0 \equiv (a^2b)a - a(a^2b) \equiv a^2(ba) - a^3b \equiv a^3c - a^3b \equiv (\alpha_3 - \alpha_7) a^3 \pmod{J^5}, \]
\[0 \equiv (a^2c)a - a(a^2c) \equiv a^2(ca) - a^3c \equiv (\gamma_5 - 1)\delta a^4 + (\beta_5 + \gamma_5 e - e)a^3b \equiv (\beta_5 + \gamma_5 - 1)a^3b \pmod{J^5}. \]
Since $\beta_5 + \gamma_5 \neq 1$ this implies that $a^3b \in J^5$. Hence $J^4 = Fa^4 + J^5$ and $\delta a^4 \in J^5$. Since $\dim J^4/J^5 = 1$ we must have $\delta = 0$. Therefore
\[0 \equiv (b^2)a - b(ba) \equiv (\alpha_3 - \alpha_7) a^3 \]
\[+ (\beta_5\gamma_3 - \beta_7 + \beta_3 e + \gamma_3\gamma_5 e - \gamma_7 e)a^2b \pmod{J^4}; \]
in particular, $\alpha_7 = \alpha_3$. Similarly, using the fact that $0 = (bc)a - b(ca) + c(ba) - (cb)a + J^4$ we see that $\beta_5 = -1$; in particular, $\gamma_5 \neq 2$. Hence
\[0 \equiv a^2(cb) - (a^2c)b \equiv (\alpha_4 - 1 - \alpha_3\gamma_5) a^4 \pmod{J^5}, \]
\[0 \equiv a^2(c^2) - (a^2c)c \equiv (\alpha_3 - \alpha_4 e) a^4 \pmod{J^5}. \]
Since \(a^4 \not\in J^5 \) this implies that \(\alpha_3 = \alpha_4 \epsilon \) and \(\alpha_4 - \alpha_4 \epsilon^2 = 1 \); in particular, \(\alpha_4 \neq 0 \) and \(\epsilon^2 \neq 1 \). But since \(a^2c \in Z \) we have
\[
0 \equiv (a^2c)b - (a^2c)(ac) \equiv \epsilon (a^4 - (a^4 + 1 - \gamma_5 \epsilon)) \quad (\text{mod } J^5),
\]
\[
0 \equiv (a^2c)b - b(a^2c) \equiv (2 - \gamma_5 \epsilon) \alpha_4 \epsilon^2 a^4 \quad (\text{mod } J^5).
\]

Hence \(\gamma_5 \epsilon = 2 \) and \(\epsilon^2 = 1 \), a contradiction.

Case 2.2.2. \(\dim J^4/J^5 = 2 \). In this case
\[
0 \equiv (a^2c)a - a^2(ca) \equiv (\delta + \delta \epsilon - \gamma_5 \delta) a^4 + (\epsilon^2 - \beta_5 - \gamma_5 \epsilon)a^3 b \quad (\text{mod } J^5),
\]
\[
0 \equiv (a^2c)b - a^2(cb) \equiv (\alpha_3 \epsilon + \gamma_3 \delta \epsilon - \alpha_4 + 1 - \gamma_6 \epsilon) a^4
\]
\[
+ (\delta + \beta_3 \epsilon + \gamma_3 \epsilon^2 - \beta_6 - \gamma_6 \epsilon)a^3 b \quad (\text{mod } J^5),
\]
\[
0 \equiv (a^2c)c - a^2c^2 \equiv (\alpha_4 \epsilon + \gamma_4 \delta \epsilon - \alpha_7 - \gamma_7 \delta + \delta^2) a^4
\]
\[
+ (\delta + \beta_4 \epsilon + \gamma_4 \epsilon^2 - \beta_7 - \gamma_7 \epsilon)a^3 b \quad (\text{mod } J^5).
\]

Since \(a^4 + J^5 \) and \(a^3 b + J^5 \) form a basis of \(J^4/J^5 \) this implies that all coefficients on the right-hand side vanish; in particular, \(0 = \delta + \delta \epsilon - \gamma_5 \delta \).

Assume that \(\delta \neq 0 \). Then \(\epsilon = \gamma_5 - 1 \) and we obtain the contradiction \(0 = \epsilon^2 - \beta_5 - \gamma_5 \epsilon = 1 - \beta_5 - \gamma_5 \). Hence we must have \(\delta = 0 \). Therefore
\[
0 \equiv (b^2)a - b(ba) \equiv (\alpha_3 - \alpha_7) a^3
\]
\[
+ (\beta_5 \gamma_3 - \beta_7 + \beta_3 \epsilon + \gamma_3 \gamma_5 \epsilon - \gamma_7 \epsilon)a^2 b \quad (\text{mod } J^4);
\]

in particular, \(\alpha_7 = \alpha_3 \). Similarly, using the fact that \(0 = (bc)a - b(ca) + c(ba) - (cb)a + J^4 \) we see that \(\beta_5 = -1 \). Hence \(\epsilon^2 - \gamma_5 \epsilon = -1 \); in particular, \(\epsilon \neq 0 \).

Therefore \(0 = \alpha_3 \epsilon + \gamma_3 \delta \epsilon - \alpha_4 + 1 - \gamma_6 \epsilon = \alpha_3 \epsilon - \alpha_4 + 1 \), and \(\alpha_4 = \alpha_3 \epsilon + 1 \). Hence \(0 = \alpha_4 \epsilon + \gamma_4 \delta \epsilon - \alpha_7 - \gamma_7 \delta + \delta^2 = \alpha_3 \epsilon^2 + \epsilon - \alpha_3 \); in particular, \(\alpha_3 \neq 0 \) and \(\epsilon^2 \neq 1 \). But this leads to the contradiction
\[
0 \equiv b(a^2c) - (ba)ac
\]
\[
\equiv -\epsilon^2 a^4 + (\beta_6 \gamma_5 \epsilon - \beta_3 \epsilon + \gamma_5 \gamma_6 \epsilon^2 - \gamma_3 \epsilon^2 - \beta_7 \gamma_5 + \beta_4 - \gamma_5 \gamma_7 \epsilon + \gamma_4 \epsilon)a^3 b
\]
\[
\quad (\text{mod } J^5).
\]

(4.8) **Lemma.** *The case (4.5) does not occur.*

Proof. We assume the contrary and distinguish two cases.

Case 1. \(\dim J^3/J^4 = 3 \). In this case we have
\[
0 \equiv (bc)a - b(ca)
\]
\[
\equiv (\alpha_4 + \gamma_4 - 1 - \alpha_6 \beta_5 - \alpha_7 + \alpha_7 \beta_5 \epsilon) a^3 + (\beta_5 \gamma_4 - \beta_5 - \beta_5 \beta_6 - \beta_7 + \beta_5 \beta_7) a^2 b
\]
\[
+ (\beta_4 + \gamma_4 - \beta_5 \gamma_4 - 1 + \beta_5 - \beta_5 \gamma_6 - \gamma_7 + \beta_5 \gamma_7) a^2 c \quad (\text{mod } J^4).
\]

Since \(a^3 + J^4 \), \(a^2 b + J^4 \), \(a^2 c + J^4 \) form a basis of \(J^3/J^4 \) we obtain
\[
(4.9) \quad 0 = \alpha_4 + \gamma_4 - 1 - \alpha_6 \beta_5 - \alpha_7 + \alpha_7 \beta_5 ,
\]
\[
(4.10) \quad 0 = \beta_5 \gamma_4 - \beta_5 - \beta_5 \beta_6 - \beta_7 + \beta_5 \beta_7 ,
\]
\[
(4.11) \quad 0 = \beta_4 + \gamma_4 - \beta_5 \gamma_4 - 1 + \beta_5 - \beta_5 \gamma_6 - \gamma_7 + \beta_5 \gamma_7 .
\]
Similarly, using the fact that \(0 \equiv (ca)b - c(ab) \pmod{J^4}\) we obtain the following equations:

\[
\begin{align*}
(4.12) & \quad 0 = \alpha_6 + \gamma_6 - \alpha_4 \beta_5 - \alpha_7 + \alpha_7 \beta_5, \\
(4.13) & \quad 0 = \beta_5 \gamma_6 - \beta_4 \beta_5 - \beta_7 + \beta_5 \beta_7, \\
(4.14) & \quad 0 = \beta_6 + \gamma_6 - \beta_5 \gamma_6 - 1 - \beta_5 \gamma_4 - \gamma_7 + \beta_5 \gamma_7.
\end{align*}
\]

Now we add (4.10) and (4.11) and subtract (4.13) and (4.14) from the result to obtain \(0 = (\beta_5 + 1)(\beta_4 - \beta_6 + \gamma_4 - \gamma_6)\). Hence \(\beta_5 = -1\). Then we subtract (4.12) from (4.9) and obtain \(0 = \gamma_4 - \gamma_6 - 1\). Hence \(\gamma_6 = \gamma_4 - 1\). Next we subtract (4.14) from (4.11) and obtain \(0 = \beta_4 - \beta_6\). Hence \(\beta_6 = \beta_4\). Then we use the fact that \(b(ba) \equiv (b^2)a \pmod{J^4}\) to obtain that \(\alpha_7 = \alpha_3 + \gamma_3, \beta_7 = -\gamma_3\) and \(\gamma_7 = \beta_3 + 2\gamma_3\). Now (4.10) implies that \(\beta_4 = \gamma_4 - 1 - 2\gamma_3\). Using the fact that \(0 \equiv (c^2)a - c(ca) \pmod{J^4}\) we obtain the following equations:

\[
\begin{align*}
(4.15) & \quad 0 = \beta_3 - \gamma_3 - 3 - 4\alpha_3 + 2\alpha_4 + 2\alpha_6, \\
(4.16) & \quad 0 = 4\gamma_4 - 2\beta_3 - 1 - 6\gamma_3;
\end{align*}
\]

in particular, \(\text{char } F \neq 2\). Now (4.11) forces \(0 = 4 + 2\beta_3 + 6\gamma_3 - 4\gamma_4\), so \(\beta_3 = 2\gamma_4 - 3\gamma_3 - 2\). Next we multiply (4.9) by 2 and subtract (4.15) to obtain \(0 = 3\), so \(\text{char } F = 3\). Thus

\[
J^2 = F\{[a, b], [a, c], [b, c], [a, ab], [a, ac], [b, a^2], \\
[b, ab], [b, ac], [c, a^2], [c, ab], [c, ac]\} + J^4
\]

\[
\subset F\{[a, b], [a, c], [b, c], a^3, a^2b - a^2c\} + J^4
\]

as is easily checked. But this contradicts the fact that \(\dim J^2/J^4 = 6\).

Case 2. \(\dim J^3/J^4 = 2\). We distinguish two more cases.

Case 2.1. \(a^2b \in F a^3 + J^4\). In this case \(J^3 = F\{a^3, a^2b, a^2c\} + J^4 = F\{a^3, a^2c\} + J^4\), and \(a^2b \equiv \delta a^4 \pmod{J^4}\) for some element \(\delta \in F\). Since \(a^3c \equiv a^2b a \equiv \delta a^4 \pmod{J^5}\) we see that \(J^4 = Fa^4 + Fa^3c + J^5 = Fa^4 + J^5\). Since \(J^4 \not\equiv J^5\) this implies that \(\dim J^4/J^5 = 1\). Now Lemma G in [6] shows that \(J^3 \subset Z\); in particular, \(a^2c \in Z\). But this leads to the contradiction \(0 \equiv (a^2c)a - a(a^2c) \equiv a^2(c(a)) - a^3c \equiv a^4 \pmod{J^5}\).

Case 2.2. \(a^2b \not\in F a^3 + J^4\). Since \(a^3 \not\in J^4\) and \(\dim J^3/J^4 = 2\) the elements \(a^3 + J^4\) and \(a^2b + J^4\) form a basis of \(J^3/J^4\) in this case. We write \(a^2c \equiv \delta a^3 + \epsilon a^2b \pmod{J^4}\) with elements \(\delta, \epsilon \in F\). Since \(J^4 = Fa^4 + Fa^3b + J^5\) and \(J^4 \not\equiv J^5\) we have \(\dim J^4/J^5 \in \{1, 2\}\). Let us distinguish the corresponding cases.

Case 2.2.1. \(\dim J^4/J^5 = 2\). In this case the elements \(a^4 + J^5\) and \(a^3b + J^5\) form a basis of \(J^4/J^5\). Since

\[
0 \equiv (a^2c)a - a^2(ca) \equiv (\delta \epsilon + \beta_5 \delta - 1)a^4 + (\epsilon - 1)(\epsilon + \beta_5)a^3b \pmod{J^5}
\]

this implies that \(\delta \epsilon + \beta_5 \delta - 1 = 0\) and \((\epsilon - 1)(\epsilon + \beta_5) = 0\). The first equation forces \(\epsilon = -\beta_5\), so \(\epsilon = 1\) by the second equation. Then, using the fact that \(0 \equiv (bc)a - b(ca) + c(ba) - (cb)a \pmod{J^4}\) we obtain the contradiction \(0 = (1 + \beta_5)(\beta_4 - \beta_6 + \gamma_4 - \gamma_6)\).
Case 2.2.2. \(\dim J^4/J^5 = 1 \). In this case \(J^3 \subset Z \) by Lemma G in [6]; in particular, \(a^2b, a^2c \in Z \). Hence \(a^2b \equiv a^2ba \equiv a^3c \quad (\text{mod } J^5) \) and \(a^2b \equiv a^3c \equiv a^2ca \equiv a^4 + a^3b \quad (\text{mod } J^5) \), so \(a^4 \in J^3 \) and \(J^4 = Fa^3b + J^5 \). Furthermore, since \(a^3b \equiv a^3c \equiv ea^3b \quad (\text{mod } J^5) \) we must have \(e = 1 \). Using the fact that \(0 \equiv (bc)a - b(ca) + (ca)b - (cb)a \quad (\text{mod } J^4) \) we obtain \(0 \equiv (1 + \beta_5)(\beta_4 - \beta_6 + \gamma_4 - \gamma_6) \), so \(\beta_5 = -1 \). Similarly, using the fact that \(0 \equiv (b^2)a - b(ba) \quad (\text{mod } J^4) \) we obtain \(\gamma_7 = \beta_3 + \gamma_3 - \beta_4 - \gamma_4 \). Then \(0 \equiv (a^2c)b - b(a^2c) \equiv (a^2c)b - (ba)ac \quad (\text{mod } J^5) \) implies that \(\delta = 1 + \beta_3 + \gamma_3 - \beta_4 - \gamma_4 \). But now the fact that \(0 \equiv a^2(c^2) - (a^2c)c \quad (\text{mod } J^5) \) leads to a contradiction.

\[(4.17) \quad \text{Lemma. The case (4.6) does not occur.}\]

\[\text{Proof. We assume the contrary and distinguish two cases.}\]

Case 1. \(\dim J^3/J^4 = 3 \). In this case the elements \(a^3 + J^4, a^2b + J^4, a^2c + J^4 \) form a basis of \(J^3/J^4 \). Since \(\beta_2 \neq 1 \) and

\[0 \equiv (bc)a - b(ca) \equiv (1 - \beta_2^2)a^3 + \beta_4(\beta_2 - \beta_2^2)a^2b + \gamma_4(\beta_2 - \beta_2^2)a^2c \quad (\text{mod } J^4)\]

this implies that \(\beta_2 = -1 \); in particular, \(\text{char } F \neq 2 \). Hence \(0 = 2\beta_4 = 2\gamma_4 \), so \(0 = \beta_4 = \gamma_4 \). Then, using similarly the fact that \(0 \equiv c(ba) - (cb)a \quad (\text{mod } J^4) \) we obtain \(0 = \beta_6 = \gamma_6 \). But now the fact that \(0 \equiv (bc)b - b(cb) \quad (\text{mod } J^4) \) leads to a contradiction.

Case 2. \(\dim J^3/J^4 = 2 \). We distinguish two more cases.

Case 2.1. \(a^2b \in F a^3 + J^4 \). In this case we have \(J^3 = F\{a^3, a^2b, a^2c\} + J^4 = Fa^3 + Fa^2c + J^4 \) and \(J^4 = Fa^4 + Fa^3c + J^5 \). Assume that \(a^4 \in J^5 \). Then \(J^4 = Fa^3c + J^5 \); in particular, \(\dim J^4/J^5 = 1 \) since \(J^4 \neq J^5 \). Hence Lemma G in [6] implies that \(J^3 \subset Z \); in particular, \(a^2c \in Z \). But this leads to the contradiction \(a^3c \equiv a^2ca \equiv \beta_2a^3c \quad (\text{mod } J^5) \).

We write \(a^2b \equiv \delta a^3 \quad (\text{mod } J^4) \) with some element \(\delta \in F \). Then \(\delta a^4 \equiv a^2ba \equiv \beta_2a^2b \equiv \beta_2^2a^4 \quad (\text{mod } J^5) \). Since \(a^4 \notin J^5 \) and \(\beta_2 \neq 1 \) this implies that \(\delta = 0 \). As in Case 1, we now use the fact that \(0 \equiv (bc)a - b(ca) \quad (\text{mod } J^4) \) to obtain that \(\beta_2 = -1 \), char \(F \neq 2 \) and \(\gamma_4 = 0 \). Similarly, using the fact that \(0 \equiv (cb)a - c(ba) \equiv (b^2)a - b(ba) \quad (\text{mod } J^4) \) we obtain \(0 = 2\gamma_6 = 2\gamma_3 \), so \(0 = \gamma_6 = \gamma_3 \). But this yields a contradiction using the fact that \(0 \equiv (bc)c - b(c^2) \quad (\text{mod } J^4) \).

Case 2.2. \(a^2b \notin F a^3 + J^4 \). Since \(a^3 \notin J^4 \) and \(\dim J^3/J^4 = 2 \) the elements \(a^3 + J^4 \) and \(a^2b + J^4 \) form a basis of \(J^3/J^4 \) in this case, and \(J^4 = Fa^4 + Fa^3b + J^5 \). Assume that \(a^4 \in J^5 \). Then \(J^4 = Fa^3b + J^5 \); in particular, \(\dim J^4/J^5 = 1 \) since \(J^4 \neq J^5 \). Hence Lemma G in [6] implies that \(J^3 \subset Z \); in particular, \(a^2b \in Z \). But now we obtain the contradiction \(a^2b \equiv a^2ba \equiv \beta_2a^3b \quad (\text{mod } J^5) \).

Hence \(a^4 \notin J^5 \), and we write \(a^2c \equiv \delta a^3 + ea^2b \quad (\text{mod } J^4) \) with elements \(\delta, e \in F \). Then \(0 \equiv (a^2c)a - a^2(ca) \equiv (1 - \beta_2)\delta a^4 \quad (\text{mod } J^5) \), so \(\delta = 0 \) since \(\beta_2 \neq 1 \) and \(a^4 \notin J^5 \). As in Case 1, we now use the fact that \(0 \equiv (bc)a - b(ca) \quad (\text{mod } J^4) \) to obtain \(\beta_2 = -1 \) and char \(F \neq 2 \). Then we distinguish two more cases.

Case 2.2.1. \(\dim J^4/J^5 = 2 \). In this case the elements \(a^4 + J^5 \) and \(a^3b + J^5 \) form a basis of \(J^4/J^5 \). Using the fact that \(0 \equiv b(a^2c) - (ba)ac \quad (\text{mod } J^5) \)
we obtain \(\alpha_3 \varepsilon = 1 \). But this leads to a contradiction using the fact that \(0 \equiv (a^2c)b - a^2(cb) \pmod{J^4} \).

Case 2.2.2. \(\dim J^4/J^5 = 1 \). In this case we have \(J^4 = Fa^4 + J^5 \) since \(a^4 \notin J^5 \). Moreover, Lemma G in [6] implies that \(J^3 \subset Z \); in particular, \(a^2b \in Z \). Thus \(a^3b \equiv a^2ba \equiv -a^3b \pmod{J^5} \), so \(a^3b \in J^5 \) since \(\text{char } F \neq 2 \). This, however, leads to a contradiction using the fact that \(0 \equiv (a^2c)b - b(a^2c) \equiv a^2(cb) - (ba)ac \pmod{J^5} \).

References

Department of Mathematics, University of Dortmund, 4600 Dortmund 50, Federal Republic of Germany

Current address: Department of Mathematics, University of Ausburg, 8900 Augsburg, Germany

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use