Prinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences
HTML articles powered by AMS MathViewer
- by J. A. de la Peña and D. Simson
- Trans. Amer. Math. Soc. 329 (1992), 733-753
- DOI: https://doi.org/10.1090/S0002-9947-1992-1025753-3
- PDF | Request permission
Abstract:
Let $A,\;B$ be artinian rings and let $_A{M_B}$ be an $(A - B)$-bimodule which is a finitely generated left $A$-module and a finitely generated right $B$-module. A right $_A{M_B}$-prinjective module is a finitely generated module ${X_R} = (X_A’, X_B'', \varphi :X_A’ \otimes _A M_B \to X''_B)$ over the triangular matrix ring \[ R = \left ( {\begin {array}{*{20}{c}} A & {_A{M_B}} \\ 0 & B \\ \end {array} } \right )\] such that $X_A’$ is a projective $A$-module, $X''_B$ is an injective $B$-module, and $\varphi$ is a $B$-homomorphism. We study the category $\operatorname {prin} (R)_B^A$ of right $_A{M_B}$-prinjective modules. It is an additive Krull-Schmidt subcategory of $\bmod (R)$ closed under extensions. For every $X,\;Y$ in $\operatorname {prin} (R)_B^A,\;\operatorname {Ext} _R^2(X, Y) = 0$. When $R$ is an Artin algebra, the category $\operatorname {prin} (R)_B^A$ has Auslander-Reiten sequences and they can be computed in terms of reflection functors. In the case that $R$ is an algebra over an algebraically closed field we give conditions for $\operatorname {prin} (R)_B^A$ to be representation-finite or representation-tame in terms of a Tits form. In some cases we calculate the coordinates of the Auslander-Reiten translation of a module using a Coxeter linear transformation.References
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978, pp. 1–244. MR 0480688
- M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426–454. MR 617088, DOI 10.1016/0021-8693(81)90214-3
- R. Bautista and F. Larrión, Auslander-Reiten quivers for certain algebras of finite representation type, J. London Math. Soc. (2) 26 (1982), no. 1, 43–52. MR 667243, DOI 10.1112/jlms/s2-26.1.43 R. Bautista and R. Martínez, Representations of partially ordered sets and $1$-Gorenstein artin algebras, Proc. Conf. on Ring Theory (Antwerp, 1978), Dekker, 1979, pp. 385-433.
- Klaus Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461–469. MR 724715, DOI 10.1112/jlms/s2-28.3.461
- Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 447344, DOI 10.1090/memo/0173
- Ju. A. Drozd, Matrix problems, and categories of matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144–153 (Russian). Investigations on the theory of representations. MR 0340282
- Ju. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 34–42 (Russian). MR 0351924
- Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71. MR 607140 R. Grecht, Kategorien von Moduln mit Untermoduln, Diplomarbeit, Zürich, 1986.
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2 H. J. von Höhne, Ganze quadratische Formen und Algebren, Dissertation, Berlin, 1986.
- Hans-Joachim von Höhne, On weakly positive unit forms, Comment. Math. Helv. 63 (1988), no. 2, 312–336. MR 948786, DOI 10.1007/BF02566771
- Bogumiła Klemp and Daniel Simson, Schurian sp-representation-finite right peak PI-rings and their indecomposable socle projective modules, J. Algebra 134 (1990), no. 2, 390–468. MR 1074337, DOI 10.1016/0021-8693(90)90061-R
- J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), no. 2, 183–194. MR 943535, DOI 10.1007/BF01259327
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Daniel Simson, Vector space categories, right peak rings and their socle projective modules, J. Algebra 92 (1985), no. 2, 532–571. MR 778466, DOI 10.1016/0021-8693(85)90138-3 —, Representations of partially ordered sets, vector space categories and socle projective modules, Paderborn, July 1983, pp. 1-141.
- Daniel Simson, Moduled categories and adjusted modules over traced rings, Dissertationes Math. (Rozprawy Mat.) 269 (1990), 67. MR 1065899 —, Artinian piecewise peak $PI$-rings of finite adjusted module type, (Torun, 1987), Preprint.
- Dieter Vossieck, Représentations de bifoncteurs et interprétation en termes de modules, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 13, 713–716 (French, with English summary). MR 972818
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 733-753
- MSC: Primary 16D90; Secondary 16D20, 16G70, 16P20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1025753-3
- MathSciNet review: 1025753