Adams’ cobar equivalence
HTML articles powered by AMS MathViewer
- by Yves Félix, Stephen Halperin and Jean-Claude Thomas
- Trans. Amer. Math. Soc. 329 (1992), 531-549
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036001-2
- PDF | Request permission
Abstract:
Let $F$ be the homotopy fibre of a continuous map $Y\xrightarrow {\omega }X$, with $X$ simply connected. We modify and extend a construction of Adams to obtain equivalences of DGA’s and DGA modules, \[ \Omega {C_{\ast }}(X)\xrightarrow { \simeq }C{U_{\ast }}(\Omega X),\] and \[ \Omega (C_{\ast }^\omega (Y);{C_{\ast }}(X))\xrightarrow { \simeq }C{U_{\ast }}(F),\] where on the left-hand side $\Omega ( - )$ denotes the cobar construction. Our equivalences are natural in $X$ and $\omega$. Using this result we show how to read off the algebra ${H_{\ast }}(\Omega X;R)$ and the ${H_{\ast }}(\Omega X;R)$ module, ${H_{\ast }}(F;R)$, from free models for the singular cochain algebras $C{S^{\ast }}(X)$ and $C{S^{\ast }}(Y)$; here we assume $R$ is a principal ideal domain and $X$ and $Y$ are of finite $R$ type.References
- J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409–412. MR 79266, DOI 10.1073/pnas.42.7.409
- J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305–330. MR 77929, DOI 10.1007/BF02564350
- Luchezar Avramov and Stephen Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 1–27. MR 846435, DOI 10.1007/BFb0075446
- Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199–236. MR 203730, DOI 10.1007/BF02564371
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Gorenstein spaces, Adv. in Math. 71 (1988), no. 1, 92–112. MR 960364, DOI 10.1016/0001-8708(88)90067-9
- Yves Félix and Jean-Claude Thomas, Module d’holonomie d’une fibration, Bull. Soc. Math. France 113 (1985), no. 3, 255–258 (French, with English summary). MR 834038, DOI 10.24033/bsmf.2031
- S. Halperin and J.-M. Lemaire, Notions of category in differential algebra, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 138–154. MR 952577, DOI 10.1007/BFb0077800
- Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113–185. MR 365571, DOI 10.1016/0022-4049(74)90045-0 J. C. Moore, Algèbre homologique et homologie des espaces classifiants, exposé no. 7, Seminaire H. Cartan, 1959/1960. —, Differential homological algebras, Proc. Internat. Congr. Math., vol. 1, 1970, pp. 1-5.
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- James Dillon Stasheff, “Parallel” transport in fibre spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 68–84. MR 236926
- James D. Stasheff, Associated fibre spaces, Michigan Math. J. 15 (1968), 457–470. MR 248833
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 531-549
- MSC: Primary 55P35; Secondary 55R20, 55T20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036001-2
- MathSciNet review: 1036001