Rigidity of $p$-completed classifying spaces of alternating groups and classical groups over a finite field
HTML articles powered by AMS MathViewer
- by Kenshi Ishiguro
- Trans. Amer. Math. Soc. 329 (1992), 697-713
- DOI: https://doi.org/10.1090/S0002-9947-1992-1096261-9
- PDF | Request permission
Abstract:
A $p$-adic rigid structure of the classifying spaces of certain finite groups $\pi$, including alternating groups ${A_n}$ and finite classical groups, is shown in terms of the maps into the $p$-completed classifying spaces of compact Lie groups. The spaces $(B\pi )_p^ \wedge$ have no nontrivial retracts. As an application, it is shown that $(B{A_n})_p^ \wedge \simeq (B{\Sigma _n})_p^ \wedge$ if and only if $n\not \equiv 0,1,\;\bmod p$. It is also shown that $(BSL(n,{\mathbb {F}_q}))_p^ \wedge \simeq (BGL(n,{\mathbb {F}_q}))_p^ \wedge$ where $q$ is a power of $p$ if and only if $(n,q - 1) = 1$.References
- J. F. Adams and Z. Mahmud, Maps between classifying spaces, Inv. Math. 35 (1976), 1–41. MR 0423352, DOI 10.1007/BF01390132
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Jean Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). MR 0072144
- William G. Dwyer and Clarence W. Wilkerson, Spaces of null homotopic maps, Astérisque 191 (1990), 6, 97–108. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR 1098969
- W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 106–119. MR 928826, DOI 10.1007/BFb0083003
- Zbigniew Fiedorowicz and Stewart Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, vol. 674, Springer, Berlin, 1978. MR 513424, DOI 10.1007/BFb0062824
- Eric M. Friedlander and Guido Mislin, Locally finite approximation of Lie groups. II, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 505–517. MR 857725, DOI 10.1017/S0305004100066238
- Kenshi Ishiguro, A $p$-local splitting of $B\textrm {U}(n)$, Proc. Amer. Math. Soc. 95 (1985), no. 2, 307–311. MR 801344, DOI 10.1090/S0002-9939-1985-0801344-3
- Kenshi Ishiguro, Classifying spaces and $p$-local irreducibility, J. Pure Appl. Algebra 49 (1987), no. 3, 253–258. MR 920940, DOI 10.1016/0022-4049(87)90133-2
- J. Lannes, Sur la cohomologie modulo $p$ des $p$-groupes abéliens élémentaires, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97–116 (French). MR 932261
- Haynes Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. MR 750716, DOI 10.2307/2007071
- Guido Mislin, The homotopy classification of self-maps of infinite quaternionic projective space, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 245–257. MR 891619, DOI 10.1093/qmath/38.2.245 —, On group homomorphism inducing $\bmod \,p$ cohomology isomorphisms, preprint.
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- D. Quillen and B. B. Venkov, Cohomology of finite groups and elementary abelian subgroups, Topology 11 (1972), 317–318. MR 294506, DOI 10.1016/0040-9383(72)90017-1
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393, DOI 10.1007/BF02684591
- Michio Suzuki, Group theory. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR 815926, DOI 10.1007/978-3-642-86885-6
- A. Zabrodsky, Maps between classifying spaces, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 228–246. MR 921480
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 697-713
- MSC: Primary 55R35; Secondary 55S37, 57T99
- DOI: https://doi.org/10.1090/S0002-9947-1992-1096261-9
- MathSciNet review: 1096261