Determinant expression of Selberg zeta functions. II
HTML articles powered by AMS MathViewer
- by Shin-ya Koyama
- Trans. Amer. Math. Soc. 329 (1992), 755-772
- DOI: https://doi.org/10.1090/S0002-9947-1992-1141858-0
- PDF | Request permission
Abstract:
This paper is the $\operatorname {PSL} (2,{\mathbf {C}})$-version of Part I. We show that for $\operatorname {PSL} (2,{\mathbf {C}})$ and its subgroup $\operatorname {PSL} (2,O)$, the Selberg zeta function with its gamma factors is expressed as the determinant of the Laplacians, where $O$ is the integer ring of an imaginary quadratic field. All the gamma factors are calculated explicitly. We also give an explicit computation to the contribution of the continuous spectrum to the determinant of the Laplacian.References
- Isaac Efrat, Determinants of Laplacians on surfaces of finite volume, Comm. Math. Phys. 119 (1988), no. 3, 443–451. MR 969211
- I. Efrat and P. Sarnak, The determinant of the Eisenstein matrix and Hilbert class fields, Trans. Amer. Math. Soc. 290 (1985), no. 2, 815–824. MR 792829, DOI 10.1090/S0002-9947-1985-0792829-1
- J. Elstrodt, F. Grunewald, and J. Mennicke, The Selberg zeta-function for cocompact discrete subgroups of $\textrm {PSL}(2,\textbf {C})$, Elementary and analytic theory of numbers (Warsaw, 1982) Banach Center Publ., vol. 17, PWN, Warsaw, 1985, pp. 83–120. MR 840474
- Ramesh Gangolli and Garth Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J. 78 (1980), 1–44. MR 571435
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- Shin-ya Koyama, Determinant expression of Selberg zeta functions. I, Trans. Amer. Math. Soc. 324 (1991), no. 1, 149–168. MR 1041049, DOI 10.1090/S0002-9947-1991-1041049-7
- Shin-ya Koyama, Determinant expression of Selberg zeta functions. III, Proc. Amer. Math. Soc. 113 (1991), no. 2, 303–311. MR 1062391, DOI 10.1090/S0002-9939-1991-1062391-5
- Nobushige Kurokawa, Parabolic components of zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 1, 21–24. MR 953756
- Peter Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), no. 1, 113–120. MR 885573
- Garth Warner, Selberg’s trace formula for nonuniform lattices: the $R$-rank one case, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 1–142. MR 535763
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 329 (1992), 755-772
- MSC: Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1992-1141858-0
- MathSciNet review: 1141858