Positive solutions of semilinear equations in cones
HTML articles powered by AMS MathViewer
- by Henrik Egnell
- Trans. Amer. Math. Soc. 330 (1992), 191-201
- DOI: https://doi.org/10.1090/S0002-9947-1992-1034662-5
- PDF | Request permission
Abstract:
In this paper we consider the problem of finding a positive solution of the equation $\Delta u + |x{|^\nu }{u^{(n + 2 + 2\nu )/(n - 2)}} = 0$ in a cone $\mathcal {C}$, with zero boundary data. We are only interested in solutions that are regular at infinity (i.e. such that $u(x) = o(|x{|^{2 - n}})$, as $\mathcal {C} \ni x \to \infty$). We will always assume that $\nu > - 2$. We show that the existence of a solution depends on the sign of $\nu$ and also on the shape of the cone $\mathcal {C}$.References
- A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294. MR 929280, DOI 10.1002/cpa.3160410302
- Catherine Bandle and Matts Essén, On positive solutions of Emden equations in cone-like domains, Arch. Rational Mech. Anal. 112 (1990), no. 4, 319–338. MR 1077263, DOI 10.1007/BF02384077
- Catherine Bandle and Howard A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc. 316 (1989), no. 2, 595–622. MR 937878, DOI 10.1090/S0002-9947-1989-0937878-9
- Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490. MR 699419, DOI 10.1090/S0002-9939-1983-0699419-3
- Jean-Michel Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 209–212 (French, with English summary). MR 762722
- E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (1988), no. 6, 600–602. MR 980763, DOI 10.1112/blms/20.6.600
- Wei Yue Ding, Positive solutions of $\Delta u+u^{(n+2)/(n-2)}=0$ on contractible domains, J. Partial Differential Equations 2 (1989), no. 4, 83–88. MR 1027983
- Wei Yue Ding and Wei-Ming Ni, On the elliptic equation $\Delta u+Ku^{(n+2)/(n-2)}=0$ and related topics, Duke Math. J. 52 (1985), no. 2, 485–506. MR 792184, DOI 10.1215/S0012-7094-85-05224-X
- Henrik Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. J. 38 (1989), no. 2, 235–251. MR 997382, DOI 10.1512/iumj.1989.38.38012
- Henrik Egnell, Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations 98 (1992), no. 1, 34–56. MR 1168970, DOI 10.1016/0022-0396(92)90103-T
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Jerry L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), no. 5, 567–597. MR 477445, DOI 10.1002/cpa.3160280502
- Donato Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 (1989), no. 2, 147–165. MR 1011429, DOI 10.1007/BF01168296
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Michael Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511–517. MR 760051, DOI 10.1007/BF01174186
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 191-201
- MSC: Primary 35B05; Secondary 35J65
- DOI: https://doi.org/10.1090/S0002-9947-1992-1034662-5
- MathSciNet review: 1034662