Invariant subspaces with finite codimension in Bergman spaces
HTML articles powered by AMS MathViewer
- by Alexandru Aleman
- Trans. Amer. Math. Soc. 330 (1992), 531-544
- DOI: https://doi.org/10.1090/S0002-9947-1992-1028755-6
- PDF | Request permission
Abstract:
For an arbitrary bounded domain in $\mathbb {C}$ there are described those finite codimensional subspaces of the Bergman space that are invariant under multiplication by $z$.References
- Sheldon Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26–44. MR 671320, DOI 10.1515/crll.1982.336.26
- Sheldon Axler, John B. Conway, and Gerard McDonald, Toeplitz operators on Bergman spaces, Canadian J. Math. 34 (1982), no. 2, 466–483. MR 658979, DOI 10.4153/CJM-1982-031-1
- Sheldon Axler and Paul Bourdon, Finite-codimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 306 (1988), no. 2, 805–817. MR 933319, DOI 10.1090/S0002-9947-1988-0933319-5
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455–474. MR 303296, DOI 10.2307/2373334
- Ralph Gellar, Operators commuting with a weighted shift, Proc. Amer. Math. Soc. 23 (1969), 538–545. MR 259641, DOI 10.1090/S0002-9939-1969-0259641-X
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 531-544
- MSC: Primary 47B38; Secondary 46E15, 47A15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1028755-6
- MathSciNet review: 1028755