Stable and uniformly stable unit balls in Banach spaces
HTML articles powered by AMS MathViewer
- by Antonio Suárez Granero
- Trans. Amer. Math. Soc. 330 (1992), 677-695
- DOI: https://doi.org/10.1090/S0002-9947-1992-1031977-1
- PDF | Request permission
Abstract:
Let $X$ be a Banach space with closed unit ball ${B_X}$ and, for $x \in X$, $r \geq 0$, put $B(x;r)= \{ u \in X:||u - x|| \leq r\}$ and $V(x,r)= {B_X} \cap B(x;r)$. We say that ${B_X}$ (or in general a convex set) is stable if the midpoint map ${\Phi _{1/2}}:{B_X} \times {B_X} \to {B_X}$, with ${\Phi _{1/2}}(u,\upsilon )= \frac {1}{2}(u + \upsilon )$, is open. We say that ${B_X}$ is uniformly stable (US) if there is a map $\alpha :(0,2] \to (0,2]$, called a modulus of uniform stability, such that, for each $x,y \in {B_X}$ and $r \in (0,2],V(\frac {1} {2}(x + y);\alpha (r)) \subseteq \frac {1} {2}(V(x;r) + V(y;r))$. Among other things, we see: (i) if $\dim X \geq 3$, then $X$ admits an equivalent norm such that ${B_X}$ is not stable; (ii) if $\dim X < \infty$, ${B_X}$ is stable iff ${B_x}$ is US; (iii) if $X$ is rotund, $X$ is uniformly rotund iff ${B_X}$ is US; (iv) if $X$ is $3.2.{\text {I.P}}$, ${B_X}$ is US and $\alpha (r)= r/2$ is a modulus of US; (v) ${B_X}$ is US iff ${B_{{X^{ \ast \ast }}}}$ is US and $X$, ${X^{ \ast \ast }}$ have (almost) the same modulus of US; (vi) ${B_X}$ is stable (resp. US) iff ${B_{C(K,X)}}$ is stable (resp. US) for each compact $K$ iff ${B_{A(K,X)}}$ is stable (resp. US) for each Choquet simplex $K$; (vii) ${B_X}$ is stable iff ${B_{{L_p}(\mu ,X)}}$ is stable for each measure $\mu$ and $1 \leq p < \infty$.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- R. M. Blumenthal, Joram Lindenstrauss, and R. R. Phelps, Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747–756. MR 209862, DOI 10.2140/pjm.1965.15.747
- Achim Clausing, Retractions and open mappings between convex sets, Math. Z. 160 (1978), no. 3, 263–274. MR 497953, DOI 10.1007/BF01237040
- A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231 (1977/78), no. 3, 193–203. MR 467249, DOI 10.1007/BF01420240
- Ryszard Grząślewicz, Finite-dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33 (1985), no. 5-6, 277–283 (English, with Russian summary). MR 816376 E. Lacey, The isometry theory of classical Banach spaces, Springer-Verlag, 1974.
- Aldo J. Lazar, Spaces of affine continuous functions on simplexes, Trans. Amer. Math. Soc. 134 (1968), 503–525. MR 233188, DOI 10.1090/S0002-9947-1968-0233188-2
- Åsvald Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62. MR 430747, DOI 10.1090/S0002-9947-1977-0430747-4
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- P. D. Morris and R. R. Phelps, Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183–200. MR 262804, DOI 10.1090/S0002-9947-1970-0262804-3
- Susanna Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), no. 3, 193–200. MR 450938, DOI 10.1007/BF01391464
- T. Parthasarathy, Selection theorems and their applications, Lecture Notes in Mathematics, Vol. 263, Springer-Verlag, Berlin-New York, 1972. MR 0417368
- Dennis Sentilles, Decomposition of weakly measurable functions, Indiana Univ. Math. J. 32 (1983), no. 3, 425–437. MR 697647, DOI 10.1512/iumj.1983.32.32031
- M. Sharir, Characterization and properties of extreme operators into $C(Y)$, Israel J. Math. 12 (1972), 174–183. MR 317026, DOI 10.1007/BF02764661
- Dirk Werner, Extreme points in function spaces, Proc. Amer. Math. Soc. 89 (1983), no. 4, 598–600. MR 718980, DOI 10.1090/S0002-9939-1983-0718980-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 677-695
- MSC: Primary 46B20; Secondary 46E40
- DOI: https://doi.org/10.1090/S0002-9947-1992-1031977-1
- MathSciNet review: 1031977