Isomorphism invariants for abelian groups
HTML articles powered by AMS MathViewer
- by D. M. Arnold and C. I. Vinsonhaler
- Trans. Amer. Math. Soc. 330 (1992), 711-724
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040040-5
- PDF | Request permission
Abstract:
Let $A= ({A_1},\ldots ,{A_n})$ be an $n$-tuple of subgroups of the additive group, $Q$, of rational numbers and let $G(A)$ be the kernel of the summation map ${A_1} \oplus \cdots \oplus {A_n} \to \sum \;{A_i}$ and $G[A]$ the cokernel of the diagonal embedding $\cap {A_1} \to {A_1} \oplus \cdots \oplus {A_n}$. A complete set of isomorphism invariants for all strongly indecomposable abelian groups of the form $G(A)$, respectively, $G[A]$, is given. These invariants are then extended to complete sets of isomorphism invariants for direct sums of such groups and for a class of mixed abelian groups properly containing the class of Warfield groups.References
- David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR 665251
- D. Arnold, R. Hunter, and F. Richman, Global Azumaya theorems in additive categories, J. Pure Appl. Algebra 16 (1980), no. 3, 223–242. MR 558485, DOI 10.1016/0022-4049(80)90026-2
- D. Arnold and C. Vinsonhaler, Representing graphs for a class of torsion-free abelian groups, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 309–332. MR 1011321
- D. Arnold and C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math. 15 (1989), no. 3, 327–340. MR 1032393
- D. Arnold and C. Vinsonhaler, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc. 105 (1989), no. 2, 293–300. MR 935102, DOI 10.1090/S0002-9939-1989-0935102-X
- D. M. Arnold and C. I. Vinsonhaler, Duality and invariants for Butler groups, Pacific J. Math. 148 (1991), no. 1, 1–10. MR 1091526
- D. Arnold and C. Vinsonhaler, Pure subgroups of finite rank completely decomposable groups. II, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 97–143. MR 722614, DOI 10.1007/BFb0103698
- M. C. R. Butler, A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. (3) 15 (1965), 680–698. MR 218446, DOI 10.1112/plms/s3-15.1.680
- M. C. R. Butler, Torsion-free modules and diagrams of vector spaces, Proc. London Math. Soc. (3) 18 (1968), 635–652. MR 230767, DOI 10.1112/plms/s3-18.4.635 —, Some almost split sequences in torsion-free abelian group theory, Abelian Group Theory, Gordon and Breach, New York, 1987, pp. 291-302.
- Paul Hill and Charles Megibben, The classification of certain Butler groups, J. Algebra 160 (1993), no. 2, 524–551. MR 1244926, DOI 10.1006/jabr.1993.1199
- E. L. Lady, Extension of scalars for torsion free modules over Dedekind domains, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London-New York, 1979, pp. 287–305. MR 565611 W. Y. Lee, Co-representing graphs for a class of torsion-free abelian groups, Ph.D. thesis, New Mexico State Univ., 1986.
- Fred Richman, An extension of the theory of completely decomposable torsion-free abelian groups, Trans. Amer. Math. Soc. 279 (1983), no. 1, 175–185. MR 704608, DOI 10.1090/S0002-9947-1983-0704608-X
- Fred Richman, Mixed groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 445–470. MR 722639, DOI 10.1007/BFb0103723
- Fred Richman, Butler groups, valuated vector spaces, and duality, Rend. Sem. Mat. Univ. Padova 72 (1984), 13–19. MR 778329
- Fred Richman, Mixed local groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 374–404. MR 645940
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 711-724
- MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040040-5
- MathSciNet review: 1040040