A general condition for lifting theorems
HTML articles powered by AMS MathViewer
- by E. Arthur Robinson
- Trans. Amer. Math. Soc. 330 (1992), 725-755
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040044-2
- PDF | Request permission
Abstract:
We define a general condition, called stability on extensions $T$ of measure preserving transformations $S$. Stability is defined in terms of relative unique ergodicity, and as a joining property. Ergodic compact group extensions are stable, and moreover stable extensions satisfy lifting theorems similar to those satisfied by group extensions. In general, stable extensions have relative entropy zero. In the class of continuous flow extensions over strictly ergodic homeomorphisms, stable extensions are generic.References
- Kenneth Berg, Quasi-disjointness in ergodic theory, Trans. Amer. Math. Soc. 162 (1971), 71–87. MR 284563, DOI 10.1090/S0002-9947-1971-0284563-1
- Kenneth R. Berg, Quasi-disjointness, products and inverse limits, Math. Systems Theory 6 (1972), 123–128. MR 306443, DOI 10.1007/BF01706083
- J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308–311. MR 118803, DOI 10.1090/S0002-9904-1960-10481-8 A. Rothstein and R. Burton, Isomorphism theorems in ergodic theory, Lecture notes, Department of Mathematics, Oregon State University.
- Jean Coquet and Pierre Liardet, A metric study involving independent sequences, J. Analyse Math. 49 (1987), 15–53. MR 928506, DOI 10.1007/BF02792891
- Nathaniel A. Friedman, Mixing on sequences, Canad. J. Math. 35 (1983), no. 2, 339–352. MR 695088, DOI 10.4153/CJM-1983-019-2
- Nathaniel A. Friedman, Higher order partial mixing, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 111–130. MR 737394, DOI 10.1090/conm/026/737394
- N. A. Friedman and D. S. Ornstein, On partially mixing transformations, Indiana Univ. Math. J. 20 (1970/71), 767–775. MR 267074, DOI 10.1512/iumj.1971.20.20061
- N. A. Friedman and D. S. Ornstein, On mixing and partial mixing, Illinois J. Math. 16 (1972), 61–68. MR 293059
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573–601. MR 133429, DOI 10.2307/2372899
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- Hillel Furstenberg and Benjamin Weiss, The finite multipliers of infinite ergodic transformations, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977) Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 127–132. MR 518553
- Shmuel Glasner, Relatively invariant measures, Pacific J. Math. 58 (1975), no. 2, 393–410. MR 380756 —, Quasi-factors in ergodic theory, Israel J. Math. 45 (1983), 198-208.
- S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), no. 4, 321–336 (1980). MR 570889, DOI 10.1007/BF02760611
- S. Glasner and B. Weiss, Processes disjoint from weak mixing, Trans. Amer. Math. Soc. 316 (1989), no. 2, 689–703. MR 946217, DOI 10.1090/S0002-9947-1989-0946217-9
- Lee Kenneth Jones, A mean ergodic theorem for weakly mixing operators, Advances in Math. 7 (1971), 211–216 (1971). MR 285690, DOI 10.1016/S0001-8708(71)80001-4
- Roger Jones and William Parry, Compact abelian group extensions of dynamical systems. II, Compositio Math. 25 (1972), 135–147. MR 338318
- Jonathan L. King, Joining-rank and the structure of finite rank mixing transformations, J. Analyse Math. 51 (1988), 182–227. MR 963154, DOI 10.1007/BF02791123
- Wolfgang Krieger, On unique ergodicity, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 327–346. MR 0393402
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- Edwin E. Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Mathematics, Vol. 47, Springer-Verlag, New York-Heidelberg, 1977. MR 0488059
- Mahesh G. Nerurkar, Ergodic continuous skew product actions of amenable groups, Pacific J. Math. 119 (1985), no. 2, 343–363. MR 803124
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI 10.2307/2373350
- M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Soviet Math. Dokl. 1 (1960), 937–938. MR 0152628
- E. Arthur Robinson Jr., The maximal abelian subextension determines weak mixing for group extensions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 443–450. MR 1062835, DOI 10.1090/S0002-9939-1992-1062835-X
- E. Arthur Robinson Jr., Ergodic properties that lift to compact group extensions, Proc. Amer. Math. Soc. 102 (1988), no. 1, 61–67. MR 915717, DOI 10.1090/S0002-9939-1988-0915717-4
- Daniel J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97–122. MR 555301, DOI 10.1007/BF02791063
- Daniel J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math. 34 (1978), 36–60 (1979). MR 531270, DOI 10.1007/BF02790007
- Daniel J. Rudolph, $k$-fold mixing lifts to weakly mixing isometric extensions, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 445–447. MR 805841, DOI 10.1017/S0143385700003060
- Daniel J. Rudolph, $\textbf {Z}^n$ and $\textbf {R}^n$ cocycle extensions and complementary algebras, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 583–599. MR 873434, DOI 10.1017/S0143385700003710 —, Asymptotically Brownian skew products give nonloosely Bernoulli $K$-automorphisms, preprint.
- Jean-Paul Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Israel J. Math. 21 (1975), no. 2-3, 177–207 (French, with English summary). MR 399419, DOI 10.1007/BF02760797
- Haruo Totoki, Ergodic theory, Lecture Notes Series, No. 14, Aarhus Universitet, Matematisk Institut, Aarhus, 1969. MR 0254216
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220. MR 159923, DOI 10.1090/S0002-9947-1963-0159923-5
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Peter Walters, Some invariant $\sigma$-algebras for measure-preserving transformations, Trans. Amer. Math. Soc. 163 (1972), 357–368. MR 291413, DOI 10.1090/S0002-9947-1972-0291413-7
- Peter Walters, Some transformations having a unique measure with maximal entropy, Proc. London Math. Soc. (3) 28 (1974), 500–516. MR 367158, DOI 10.1112/plms/s3-28.3.500
- Benjamin Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 143–146. MR 799798, DOI 10.1090/S0273-0979-1985-15399-6
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
- Robert J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), no. 4, 555–588. MR 414832
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 725-755
- MSC: Primary 28D05; Secondary 28D20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040044-2
- MathSciNet review: 1040044