Trace functions in the ring of fractions of polycyclic group rings
HTML articles powered by AMS MathViewer
- by A. I. Lichtman
- Trans. Amer. Math. Soc. 330 (1992), 769-781
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040264-7
- PDF | Request permission
Abstract:
Let $KG$ be the group ring of a polycyclic-by-finite group $G$ over a field $K$ of characteristic zero, $R$ be the Goldie ring of fractions of $KG$, $S$ be an arbitrary subring of ${R_{n \times n}}$. We prove that the intersection of the commutator subring $[S,S]$ with the center $Z(S)$ is nilpotent. This implies the existence of a nontrivial trace function in ${R_{n \times n}}$.References
- Robert L. Snider, The division ring of fractions of a group ring, Paul Dubreil and Marie-Paule Malliavin algebra seminar, 35th year (Paris, 1982) Lecture Notes in Math., vol. 1029, Springer, Berlin, 1983, pp. 325–339. MR 732482, DOI 10.1007/BFb0098938
- Akira Hattori, Rank element of a projective module, Nagoya Math. J. 25 (1965), 113–120. MR 175950
- John Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem, Topology 4 (1965), 129–134. MR 202807, DOI 10.1016/0040-9383(65)90060-1
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- A. I. Lichtman, On normal subgroups of multiplicative group of skew fields generated by a polycyclic-by-finite group, J. Algebra 78 (1982), no. 2, 548–577. MR 680374, DOI 10.1016/0021-8693(82)90095-3
- A. I. Lichtman, On linear groups over a field of fractions of a polycyclic group ring, Israel J. Math. 42 (1982), no. 4, 318–326. MR 682316, DOI 10.1007/BF02761413
- M. Shirvani and B. A. F. Wehrfritz, Skew linear groups, London Mathematical Society Lecture Note Series, vol. 118, Cambridge University Press, Cambridge, 1986. MR 883801
- B. A. F. Wehrfritz, On division rings generated by polycyclic groups, Israel J. Math. 47 (1984), no. 2-3, 154–164. MR 738166, DOI 10.1007/BF02760514
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Peter Schmid, Lifting modular representations of $p$-solvable groups, J. Algebra 83 (1983), no. 2, 461–470. MR 714256, DOI 10.1016/0021-8693(83)90230-2
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- D. S. Passman, Universal fields of fractions for polycyclic group algebras, Glasgow Math. J. 23 (1982), no. 2, 103–113. MR 663135, DOI 10.1017/S0017089500004869
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- A. Eizenbud and A. I. Lichtman, On embedding of group rings of residually torsion free nilpotent groups into skew fields, Trans. Amer. Math. Soc. 299 (1987), no. 1, 373–386. MR 869417, DOI 10.1090/S0002-9947-1987-0869417-3
- A. I. Lichtman, On PI-subrings of matrix rings over some classes of skew fields, J. Pure Appl. Algebra 52 (1988), no. 1-2, 77–89. MR 949338, DOI 10.1016/0022-4049(88)90136-3
- Martin Lorenz, Division algebras generated by finitely generated nilpotent groups, J. Algebra 85 (1983), no. 2, 368–381. MR 725089, DOI 10.1016/0021-8693(83)90101-1
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 769-781
- MSC: Primary 16S34; Secondary 20C07
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040264-7
- MathSciNet review: 1040264