Justification of multidimensional single phase semilinear geometric optics
HTML articles powered by AMS MathViewer
- by Jean-Luc Joly and Jeffrey Rauch
- Trans. Amer. Math. Soc. 330 (1992), 599-623
- DOI: https://doi.org/10.1090/S0002-9947-1992-1073774-7
- PDF | Request permission
Abstract:
For semilinear strictly hyperbolic systems $Lu= f(x,u)$, we construct and justify high frequency nonlinear asymptotic expansions of the form \[ {u^\varepsilon }(x)\sim \sum \limits _{j \geq 0} {{\varepsilon ^j}{U_j}(x,\varphi (x)/\varepsilon }, \quad L{u^\varepsilon } - f(x,{u^\varepsilon })\sim 0 .\] The study of the principal term of such expansions is called nonlinear geometric optics in the applied literature. We show (i) formal expansions with periodic profiles ${U_j}$ can be computed to all orders, (ii) the equations for the profiles from (i) are solvable, and (iii) there are solutions of the exact equations which have the formal series as high frequency asymptotic expansion.References
- Yvonne Choquet-Bruhat, Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures Appl. (9) 48 (1969), 117–158 (French). MR 255964
- Ronald J. DiPerna and Andrew Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Phys. 98 (1985), no. 3, 313–347. MR 788777 W. E, Propagation of oscillations in the solutions of $1\text {-}d$ compressible fluid equations (preprint).
- Olivier Guès, Ondes oscillantes simples quasilinéaires, Journées “Équations aux Dérivées Partielles” (Saint Jean de Monts, 1989) École Polytech., Palaiseau, 1989, pp. Exp. No. IX, 8 (French). MR 1030824
- John K. Hunter and Joseph B. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math. 36 (1983), no. 5, 547–569. MR 716196, DOI 10.1002/cpa.3160360502
- J. K. Hunter, A. Majda, and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables, Stud. Appl. Math. 75 (1986), no. 3, 187–226. MR 867874, DOI 10.1002/sapm1986753187
- J.-L. Joly, G. Métivier, and J. Rauch, Resonant one-dimensional nonlinear geometric optics, J. Funct. Anal. 114 (1993), no. 1, 106–231. MR 1220985, DOI 10.1006/jfan.1993.1065
- J.-L. Joly and J. Rauch, Ondes oscillantes semi-linéaires en $1$d, Journées “Équations aux dérivées partielles” (Saint Jean de Monts, 1986) École Polytech., Palaiseau, 1986, pp. No. XI, 20 (French). MR 874553
- L. Cattabriga, F. Colombini, M. K. V. Murthy, and S. Spagnolo (eds.), Recent developments in hyperbolic equations, Pitman Research Notes in Mathematics Series, vol. 183, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 984355
- J.-L. Joly and J. Rauch, High frequency semilinear oscillations, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986) Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 202–216. MR 920836, DOI 10.1007/978-1-4613-9583-6_{7}
- Jean-Luc Joly and Jeffrey Rauch, Nonlinear resonance can create dense oscillations, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988–1989) IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 113–123. MR 1120286, DOI 10.1007/978-1-4613-9136-4_{8}
- Andrew Majda and Rodolfo Rosales, Resonantly interacting weakly nonlinear hyperbolic waves. I. A single space variable, Stud. Appl. Math. 71 (1984), no. 2, 149–179. MR 760229, DOI 10.1002/sapm1984712149
- Andrew Majda, Rodolfo Rosales, and Maria Schonbek, A canonical system of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79 (1988), no. 3, 205–262. MR 975485, DOI 10.1002/sapm1988793205
- Jeffrey B. Rauch and Frank J. Massey III, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. MR 340832, DOI 10.1090/S0002-9947-1974-0340832-0
- Richard Melrose and Niles Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. (2) 121 (1985), no. 1, 187–213. MR 782559, DOI 10.2307/1971196
- Guy Métivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J. 53 (1986), no. 4, 983–1011. MR 874678, DOI 10.1215/S0012-7094-86-05349-4
- Jeffrey Rauch and Michael C. Reed, Discontinuous progressing waves for semilinear systems, Comm. Partial Differential Equations 10 (1985), no. 9, 1033–1075. MR 806255, DOI 10.1080/03605308508820400
- Jeffrey Rauch and Michael Reed, Striated solutions of semilinear, two-speed wave equations, Indiana Univ. Math. J. 34 (1985), no. 2, 337–353. MR 783919, DOI 10.1512/iumj.1985.34.34020 —, Bounded, stratified, and striated solutions of hyperbolic systems, Nonlinear Partial Differential Equations and Their Applications, Vol. IX (H. Brezis and J. L. Lions, eds.), Research Notes in Math., vol. 181, Pitman, New York, 1989.
- Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, No. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 330 (1992), 599-623
- MSC: Primary 35C20; Secondary 35L40, 35L60, 78A05
- DOI: https://doi.org/10.1090/S0002-9947-1992-1073774-7
- MathSciNet review: 1073774