Stable splittings of the dual spectrum of the classifying space of a compact Lie group
HTML articles powered by AMS MathViewer
- by Chun-Nip Lee
- Trans. Amer. Math. Soc. 331 (1992), 77-111
- DOI: https://doi.org/10.1090/S0002-9947-1992-1031240-9
- PDF | Request permission
Abstract:
For a compact Lie group $G$, there is a map from the $G$-equivariant fixed point spectrum of the zero sphere to the dual spectrum of the classifying space of $G, DB{G_ + }$. When $G$ is finite, the affirmative solution to Segal’s conjecture states that this map is an equivalence upon appropriate completion of the source. In the case of a compact Lie group, we obtain splitting results of $DB{G_ + }$ via this map upon taking $p$-adic completions.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 763905, DOI 10.2307/2006940
- Tammo tom Dieck, Orbittypen und äquivariante Homologie. II, Arch. Math. (Basel) 26 (1975), no. 6, 650–662. MR 436177, DOI 10.1007/BF01229795
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- Mark Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), no. 1, 1–20. MR 880503, DOI 10.1016/0040-9383(87)90016-4
- L. G. Lewis, J. P. May, and J. E. McClure, Classifying $G$-spaces and the Segal conjecture, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 165–179. MR 686144
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Benjamin M. Mann, Edward Y. Miller, and Haynes R. Miller, $S^1$-equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc. 295 (1986), no. 1, 233–256. MR 831198, DOI 10.1090/S0002-9947-1986-0831198-6
- Stephen A. Mitchell and Stewart B. Priddy, Symmetric product spectra and splittings of classifying spaces, Amer. J. Math. 106 (1984), no. 1, 219–232. MR 729761, DOI 10.2307/2374436
- Haynes Miller and Clarence Wilkerson, On the Segal conjecture for periodic groups, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 233–246. MR 711055, DOI 10.1090/conm/019/711055
- Goro Nishida, On the $S^{1}$-Segal conjecture, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1153–1162. MR 723464, DOI 10.2977/prims/1195182024
- Douglas C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984), no. 2, 415–446. With an appendix by Haynes R. Miller. MR 737779, DOI 10.2307/2374309
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 77-111
- MSC: Primary 55P42; Secondary 55Q45
- DOI: https://doi.org/10.1090/S0002-9947-1992-1031240-9
- MathSciNet review: 1031240