On the genus of smooth $4$-manifolds
HTML articles powered by AMS MathViewer
- by Alberto Cavicchioli
- Trans. Amer. Math. Soc. 331 (1992), 203-214
- DOI: https://doi.org/10.1090/S0002-9947-1992-1034659-5
- PDF | Request permission
Abstract:
The projective complex plane and the "twisted" ${S^3}$ bundle over ${S^1}$ are proved to be the unique closed prime connected (smooth or $\text {PL}$) $4$-manifolds of genus two. Then the classification of the nonorientable $4$-manifolds of genus $4$ is given. Finally the genus of a manifold $M$ is shown to be related with the $2$nd Betti number of $M$ and some applications are proved in the general (resp. simply-connected) case.References
- Javier Bracho and Luis Montejano, The combinatorics of colored triangulations of manifolds, Geom. Dedicata 22 (1987), no. 3, 303–328. MR 887580, DOI 10.1007/BF00147939
- Alberto Cavicchioli, A combinatorial characterization of $S^3\times S^1$ among closed $4$-manifolds, Proc. Amer. Math. Soc. 105 (1989), no. 4, 1008–1014. MR 931726, DOI 10.1090/S0002-9939-1989-0931726-4
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- S. K. Donaldson, Connections, cohomology and the intersection forms of $4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 275–341. MR 868974
- Massimo Ferri, Una rappresentazione delle $n$-varietà topologiche triangolabili mediante grafi $(n+1)$-colorati, Boll. Un. Mat. Ital. B (5) 13 (1976), no. 1, 250–260. MR 0428336
- Massimo Ferri and Carlo Gagliardi, The only genus zero $n$-manifold is $S^{n}$, Proc. Amer. Math. Soc. 85 (1982), no. 4, 638–642. MR 660620, DOI 10.1090/S0002-9939-1982-0660620-5
- Massimo Ferri and Carlo Gagliardi, On the genus of $4$-dimensional products of manifolds, Geom. Dedicata 13 (1982), no. 3, 331–345 (English, with Italian summary). MR 690678, DOI 10.1007/BF00148238
- M. Ferri, C. Gagliardi, and L. Grasselli, A graph-theoretical representation of PL-manifolds—a survey on crystallizations, Aequationes Math. 31 (1986), no. 2-3, 121–141. MR 867510, DOI 10.1007/BF02188181
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Carlo Gagliardi, Extending the concept of genus to dimension $n$, Proc. Amer. Math. Soc. 81 (1981), no. 3, 473–481. MR 597666, DOI 10.1090/S0002-9939-1981-0597666-0
- Carlo Gagliardi, How to deduce the fundamental group of a closed $n$-manifold from a contracted triangulation, J. Combin. Inform. System Sci. 4 (1979), no. 3, 237–252 (English, with Italian summary). MR 586313
- Carlo Gagliardi, On the genus of the complex projective plane, Aequationes Math. 37 (1989), no. 2-3, 130–140. MR 1004490, DOI 10.1007/BF01836440
- Carlo Gagliardi and Gaetano Volzone, Handles in graphs and sphere bundles over $S^1$, European J. Combin. 8 (1987), no. 2, 151–158. MR 896128, DOI 10.1016/S0195-6698(87)80006-9
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161
- Richard Mandelbaum, Four-dimensional topology: an introduction, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 1–159. MR 551752, DOI 10.1090/S0273-0979-1980-14687-X
- José María Montesinos, Heegaard diagrams for closed $4$-manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 219–237. MR 537732
- Mario Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), no. 1, 269–277 (1975). MR 0402792
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288 A. T. White, Graphs, groups and surface, North-Holland, Amsterdam, 1973.
- J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math. (2) 73 (1961), 154–212. MR 124917, DOI 10.2307/1970286
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 203-214
- MSC: Primary 57N13; Secondary 57Q05, 57R60
- DOI: https://doi.org/10.1090/S0002-9947-1992-1034659-5
- MathSciNet review: 1034659