A quasiregular analogue of a theorem of Hardy and Littlewood
HTML articles powered by AMS MathViewer
- by Craig A. Nolder
- Trans. Amer. Math. Soc. 331 (1992), 215-226
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036007-3
- PDF | Request permission
Abstract:
Suppose that $f$ is analytic in the unit disk. A theorem of Hardy and Littlewood relates the Hölder continuity of $f$ over the unit disk to the growth of the derivative. We prove here a quasiregular analogue of this result in certain domains in $n$-dimensional space. We replace values of the derivative with a local integral average. In the process we generalize a result on the continuity of quasiconformal mappings due to Nakki and Palka. We also present another proof of the relationship between the growth of the derivative and quasiregular mappings in $\text {BMO}$.References
- K. Astala and F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985), no. 1, 99–107. MR 777305, DOI 10.1307/mmj/1029003136
- K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math. 46 (1986), 16–57. MR 861687, DOI 10.1007/BF02796572
- B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $\textbf {R}^{n}$, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 257–324. MR 731786, DOI 10.5186/aasfm.1983.0806
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519. MR 132841, DOI 10.1090/S0002-9947-1961-0132841-2
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219. MR 802481, DOI 10.5186/aasfm.1985.1022
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267–282. MR 802488, DOI 10.5186/aasfm.1985.1030
- Vesa Lappalainen, $\textrm {Lip}_h$-extension domains, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 56 (1985), 52. MR 822591
- O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969), 40. MR 0259114
- Raimo Näkki and Bruce Palka, Lipschitz conditions and quasiconformal mappings, Indiana Univ. Math. J. 31 (1982), no. 3, 377–401. MR 652824, DOI 10.1512/iumj.1982.31.31033
- C. A. Nolder, Conjugate functions and moduli of continuity, Illinois J. Math. 31 (1987), no. 4, 699–709. MR 909793
- H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260–276. MR 361067, DOI 10.1007/BF02566734
- Hans Martin Reimann and Thomas Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics, Vol. 487, Springer-Verlag, Berlin-New York, 1975 (German). MR 0511997
- Jukka Sarvas, Symmetrization of condensers in $n$-space, Ann. Acad. Sci. Fenn. Ser. A. I. 522 (1972), 44. MR 348108
- Susan G. Staples, $L^p$-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 103–127. MR 997974, DOI 10.5186/aasfm.1989.1429
- Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69–115. MR 833408, DOI 10.1007/BF02792546
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 215-226
- MSC: Primary 30C62
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036007-3
- MathSciNet review: 1036007