An open collar theorem for $4$-manifolds
HTML articles powered by AMS MathViewer
- by Craig R. Guilbault
- Trans. Amer. Math. Soc. 331 (1992), 227-245
- DOI: https://doi.org/10.1090/S0002-9947-1992-1038016-7
- PDF | Request permission
Abstract:
Let ${M^4}$ be an open $4$-manifold with boundary. Conditions are given under which ${M^4}$ is homeomorphic to $\partial M \times [0,1)$. Applications include a $4$-dimensional weak $h$-cobordism theorem and a classification of weakly flat embeddings of $2$-spheres in ${S^4}$. Specific examples of $(n - 2)$-spheres embedded in ${S^n}$ (including $n = 4$) are also discussed.References
- E. Artin, Zur isotopie zweidimensionalen flรคchen im ${R_4}$, Abh. Math. Sem. Univ. Hamburg 4 (1926), 174-177.
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294โ305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp.ย 1โ18. MR 0238284
- W. S. Boyd and A. H. Wright, A $1-\textrm {ALG}$ simple closed curve in $E^{3}$ is tame, Canadian J. Math. 25 (1973), 646โ656. MR 324705, DOI 10.4153/CJM-1973-065-0
- E. M. Brown and T. W. Tucker, On proper homotopy theory for noncompact $3$-manifolds, Trans. Amer. Math. Soc. 188 (1974), 105โ126. MR 334225, DOI 10.1090/S0002-9947-1974-0334225-X
- J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265โ272. MR 290376, DOI 10.1093/qmath/21.3.265
- A. V. ฤernavskiฤญ, The identity of local flatness and local simple connectedness for imbeddings of $(n-1)$-dimensional into $n$-dimensional manifolds when $n>4$, Mat. Sb. (N.S.) 91(133) (1973), 279โ286, 288 (Russian). MR 0334222
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320
- T. A. Chapman, Locally homotopically unknotted embeddings of manifolds in codimension two are locally flat, Topology 18 (1979), no.ย 4, 339โ348. MR 551015, DOI 10.1016/0040-9383(79)90024-7
- Robert J. Daverman, On weakly flat $1$-spheres, Proc. Amer. Math. Soc. 38 (1973), 207โ210. MR 310894, DOI 10.1090/S0002-9939-1973-0310894-X
- Robert J. Daverman, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410โ413. MR 321095, DOI 10.1090/S0002-9904-1973-13190-8
- Robert J. Daverman, Homotopy classification of complements of locally flat codimension two spheres, Amer. J. Math. 98 (1976), no.ย 2, 367โ374. MR 420632, DOI 10.2307/2373890
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- R. J. Daverman and T. B. Rushing, Weak flatness criteria for codimension $2$ spheres in codimension $1$ manifolds, General Topology and Appl. 6 (1976), no.ย 1, 101โ115. MR 394681
- Paul F. Duvall Jr., Weakly flat spheres, Michigan Math. J. 16 (1969), 117โ124. MR 246300
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. I, Ann. of Math. (2) 124 (1986), no.ย 3, 531โ569. MR 866708, DOI 10.2307/2007092
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979โ990. MR 27512, DOI 10.2307/1969408
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no.ย 3, 357โ453. MR 679066
- Michael H. Freedman, The disk theorem for four-dimensional manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp.ย 647โ663. MR 804721
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Gene G. Garza, Weakly flat curves, Topology Proc. 5 (1980), 71โ76 (1981). MR 624463
- J. P. Hempel and D. R. McMillan Jr., Locally nice embeddings of manifolds, Amer. J. Math. 88 (1966), 1โ19. MR 205257, DOI 10.2307/2373043
- J. G. Hollingsworth and T. B. Rushing, Homotopy characterizations of weakly flat codimension $2$ spheres, Amer. J. Math. 98 (1976), no.ย 2, 385โ394. MR 420631, DOI 10.2307/2373892
- L. S. Husch and T. M. Price, Finding a boundary for a $3$-manifold, Ann. of Math. (2) 91 (1970), 223โ235. MR 264678, DOI 10.2307/1970605 V. Liem and G. Venema, Homotopy characterization of weakly flat $2$-spheres in ${S^4}$ (to appear).
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327โ337. MR 161320, DOI 10.2307/1970548 M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math. 8 (1937), 21-41.
- Frank Quinn, Ends of maps. III. Dimensions $4$ and $5$, J. Differential Geometry 17 (1982), no.ย 3, 503โ521. MR 679069
- W. H. Row and John J. Walsh, A nonshrinkable decomposition of $S^3$ whose nondegenerate elements are contained in a cellular arc, Trans. Amer. Math. Soc. 289 (1985), no.ย 1, 227โ252. MR 779062, DOI 10.1090/S0002-9947-1985-0779062-4 L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. dissertation, Princeton Univ., Princeton, N.J., 1965.
- L. C. Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201โ227. MR 246301, DOI 10.1090/S0002-9947-1969-0246301-9
- L. C. Siebenmann, Infinite simple homotopy types, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 479โ495. MR 0287542
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481โ488. MR 149457
- Gerard A. Venema, Neighborhoods of compacta in $4$-manifolds, Topology Appl. 31 (1989), no.ย 1, 83โ97. MR 984106, DOI 10.1016/0166-8641(89)90100-4
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 227-245
- MSC: Primary 57N13; Secondary 57N40, 57N45
- DOI: https://doi.org/10.1090/S0002-9947-1992-1038016-7
- MathSciNet review: 1038016