L’espace des pseudo-arcs d’une surface
HTML articles powered by AMS MathViewer
- by Robert Cauty
- Trans. Amer. Math. Soc. 331 (1992), 247-263
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040259-3
- PDF | Request permission
Abstract:
We prove that, for any surface $M$, the space of pseudo-arcs contained in $M$ is homeomorphic to $M \times {l^2}$.References
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451, DOI 10.2140/pjm.1951.1.43
- Tammo tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971), 159–167. MR 293625
- C. H. Dowker, Homotopy extension theorems, Proc. London Math. Soc. (3) 6 (1956), 100–116. MR 73982, DOI 10.1112/plms/s3-6.1.100
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- David W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121–124. MR 251749, DOI 10.1090/S0002-9904-1970-12392-8
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- R. Luke and W. K. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 275–285. MR 301693, DOI 10.1090/S0002-9947-1972-0301693-7
- A. I. Markushevich, Theory of functions of a complex variable. Vol. III, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. Revised English edition, translated and edited by Richard A. Silverman. MR 0215964
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
- H. Toruńczyk, A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of $l_2$-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR0518344 (80g:57019)] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR0611763 (82i:57016)], Fund. Math. 125 (1985), no. 1, 89–93. MR 813992, DOI 10.4064/fm-125-1-89-93 G. T. Whybura, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942; 3rd printing 1986.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 247-263
- MSC: Primary 57N20; Secondary 54B20, 54F15, 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1992-1040259-3
- MathSciNet review: 1040259