A Chern character in cyclic homology
HTML articles powered by AMS MathViewer
- by Luca Quardo Zamboni
- Trans. Amer. Math. Soc. 331 (1992), 157-163
- DOI: https://doi.org/10.1090/S0002-9947-1992-1044967-X
- PDF | Request permission
Abstract:
We show that inner derivations act trivially on the cyclic cohomology of the normalized cyclic complex $\mathcal {C}(\Omega )/\mathcal {D}(\Omega )$ where $\Omega$ is a differential graded algebra. This is then used to establish the fact that the map introduced in $[ \text {GJ} ]$ defines a Chern character in $K$ theory.References
- Kuo-tsai Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217–246. MR 380859, DOI 10.2307/1970846
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- Ezra Getzler and John D. S. Jones, $A_\infty$-algebras and the cyclic bar complex, Illinois J. Math. 34 (1990), no. 2, 256–283. MR 1046565
- Ezra Getzler, John D. S. Jones, and Scott Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), no. 3, 339–371. MR 1113683, DOI 10.1016/0040-9383(91)90019-Z
- John D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. MR 870737, DOI 10.1007/BF01389424
- Christian Kassel, L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), no. 2, 221–251 (French, with English summary). MR 922799, DOI 10.1007/BF01389366
- Jean-Louis Loday and Daniel Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. MR 780077, DOI 10.1007/BF02566367
- B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217–218 (Russian). MR 695483
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 157-163
- MSC: Primary 19L10; Secondary 18G50, 19K56, 55P35
- DOI: https://doi.org/10.1090/S0002-9947-1992-1044967-X
- MathSciNet review: 1044967