Nests of subspaces in Banach space and their order types
HTML articles powered by AMS MathViewer
- by Alvaro Arias and Jeff Farmer
- Trans. Amer. Math. Soc. 331 (1992), 113-130
- DOI: https://doi.org/10.1090/S0002-9947-1992-1050084-5
- PDF | Request permission
Abstract:
This paper addresses some questions which arise naturally in the theory of nests of subspaces in Banach space. The order topology on the index set of a nest is discussed, as well as the method of spatial indexing by a vector; sufficient geometric conditions for the existence of such a vector are found. It is then shown that a continuous nest exists in any Banach space. Applications and examples follow; in particular, an extension of the Volterra nest in ${L^\infty }[ {0,1} ]$ to a continuous one, a continuous nest in a Banach space having no two elements isomorphic to one another, and a characterization of separable ${\mathcal {L}_p}$-spaces in terms of nests.References
- G. D. Allen, D. R. Larson, J. D. Ward, and G. Woodward, Similarity of nests in $\textbf {L}_1$, J. Funct. Anal. 92 (1990), no. 1, 49–76. MR 1064686, DOI 10.1016/0022-1236(90)90067-U
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259. MR 121675, DOI 10.2307/2372733
- David R. Larson, On similarity of nests in Hilbert space and in Banach spaces, Functional analysis (Austin, TX, 1986–87) Lecture Notes in Math., vol. 1332, Springer, Berlin, 1988, pp. 179–194. MR 967097, DOI 10.1007/BFb0081620 —, Triangularity in operator algebras, Surveys of Recent Results in Operator Theory (J. Conway, Ed.), Pitman Research Notes in Math., Longman (to appear).
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- N. J. Nielsen and P. Wojtaszczyk, A remark on bases in ${\cal L}_{p}$-spaces with an application to complementably universal ${\cal L}_{\infty }$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 249–254 (English, with Russian summary). MR 322484
- J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367–384. MR 136998, DOI 10.1112/plms/s3-12.1.367
- Derek J. Westwood, Nests in Banach space, J. Math. Anal. Appl. 156 (1991), no. 2, 558–567. MR 1103029, DOI 10.1016/0022-247X(91)90414-U
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 113-130
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1050084-5
- MathSciNet review: 1050084