A simplified trace formula for Hecke operators for $\Gamma _ 0(N)$
HTML articles powered by AMS MathViewer
- by Shepley L. Ross
- Trans. Amer. Math. Soc. 331 (1992), 425-447
- DOI: https://doi.org/10.1090/S0002-9947-1992-1053115-1
- PDF | Request permission
Abstract:
Let $N$ and $n$ be relatively prime positive integers, let $\chi$ be a Dirichlet character modulo $N$, and let $k$ be a positive integer. Denote by ${S_k}(N,\chi )$ the space of cusp forms on ${\Gamma _0}(N)$ of weight $k$ and character $\chi$, a space denoted simply ${S_k}(N)$ when $\chi$ is the trivial character. Beginning with Hijikata’s formula for the trace of ${T_n}$ acting on ${S_k}(N,\chi )$, we develop a formula which essentially reduces the computation of this trace to looking up values in a table. From this formula we develop very simple formulas for (1) the dimension of ${S_k}(N,\chi )$ and (2) the trace of ${T_n}$ acting on ${S_k}(N)$.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Hiroaki Hijikata, Explicit formula of the traces of Hecke operators for $\Gamma _{0}(N)$, J. Math. Soc. Japan 26 (1974), 56–82. MR 337783, DOI 10.2969/jmsj/02610056 H. Hijikata, A. Pizer, and T. Shemanske, The basis problem for modular forms on ${\Gamma _0}(N)$, Mem. Amer. Math. Soc. No. 418, 1989. —, Twists of newforms, preprint, 1988.
- Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315. MR 369263, DOI 10.1007/BF01344466
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 425-447
- MSC: Primary 11F11; Secondary 11F25, 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1992-1053115-1
- MathSciNet review: 1053115