A Haar-type theory of best $L_ 1$-approximation with constraints
HTML articles powered by AMS MathViewer
- by András Kroó and Darrell Schmidt
- Trans. Amer. Math. Soc. 331 (1992), 301-319
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062190-X
- PDF | Request permission
Abstract:
A general setting for constrained ${L^1}$-approximation is presented. Let ${U_n}$ be a finite dimensional subspace of $C[a,b]$ and $L$ be a linear operator from ${U_n}$ to ${C^r}(K)\;(r = 0,1)$ where $K$ is a finite union of disjoint, closed, bounded intervals. For $\upsilon ,u \in {C^r}(K)$ with $\upsilon < u$, the approximating set is ${\tilde U_n}(\upsilon ,u) = \{ p \in {U_n}:\upsilon \leq Lp \leq u\;{\text {on}}\;K\}$ and the norm is $\|f\|_w = \int _a^b {|f|w dx}$ where $w$ a positive continuous function on $[a,b]$. We obtain necessary and sufficient conditions for ${\tilde U_n}(\upsilon ,u)$ to admit unique best $\|\;\cdot \;\|_w$-approximations to all $f \in C[a,b]$ for all positive continuous $w$ and all $\upsilon ,u \in {C^r}(K)\;(r = 0,1)$ satisfying a nonempty interior condition. These results are applied to several ${L^1}$-approximation problems including polynomial and spline approximation with restricted derivatives, lacunary polynomial approximation with restricted derivatives, and others.References
- Bruce L. Chalmers, A unified approach to uniform real approximation by polynomials with linear restrictions, Trans. Amer. Math. Soc. 166 (1972), 309–316. MR 294962, DOI 10.1090/S0002-9947-1972-0294962-0
- B. L. Chalmers and G. D. Taylor, Uniform approximation with constraints, Jahresber. Deutsch. Math.-Verein. 81 (1978/79), no. 2, 49–86. MR 535098
- S. Ja. Havinson, On uniqueness of functions of best approximation in the metric of the space $L_{1}$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 243–270 (Russian). MR 0101443
- András Kroó, On an $L_1$-approximation problem, Proc. Amer. Math. Soc. 94 (1985), no. 3, 406–410. MR 787882, DOI 10.1090/S0002-9939-1985-0787882-0 —, Best ${L^1}$-approximation with varying weights, Proc. Amer. Math. Soc. 99 (1987), 6670.
- A. Kroó and D. Schmidt, A Haar-type theory of best uniform approximation with constraints, Acta Math. Hungar. 58 (1991), no. 3-4, 351–374. MR 1153490, DOI 10.1007/BF01903965
- Wu Li, Weak Chebyshev subspaces and $A$-subspaces of $C[a,b]$, Trans. Amer. Math. Soc. 322 (1990), no. 2, 583–591. MR 1010886, DOI 10.1090/S0002-9947-1990-1010886-6
- George G. Lorentz, Kurt Jetter, and Sherman D. Riemenschneider, Birkhoff interpolation, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 680938
- A. Pinkus, Unicity subspaces in $L^1$-approximation, J. Approx. Theory 48 (1986), no. 2, 226–250. MR 862238, DOI 10.1016/0021-9045(86)90007-9 —, On ${L^1}$-approximation, Cambridge Univ. Press, Cambridge, U.K., 1989.
- Allan Pinkus and Hans Strauss, $L^1$-approximation with constraints, Trans. Amer. Math. Soc. 322 (1990), no. 1, 239–261. MR 986698, DOI 10.1090/S0002-9947-1990-0986698-6
- John A. Roulier and Gerald D. Taylor, Approximation by polynomials with restricted ranges of their derivatives, J. Approximation Theory 5 (1972), 216–227. MR 352821, DOI 10.1016/0021-9045(72)90015-9
- Darrell Schmidt, A theorem on weighted $L^1$-approximation, Proc. Amer. Math. Soc. 101 (1987), no. 1, 81–84. MR 897074, DOI 10.1090/S0002-9939-1987-0897074-4
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 301-319
- MSC: Primary 41A29; Secondary 41A52
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062190-X
- MathSciNet review: 1062190