On the $p$-adic completions of nonnilpotent spaces
HTML articles powered by AMS MathViewer
- by A. K. Bousfield
- Trans. Amer. Math. Soc. 331 (1992), 335-359
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062866-4
- PDF | Request permission
Abstract:
This paper deals with the $p$-adic completion ${F_{p\infty }}X$ developed by Bousfield-Kan for a space $X$ and prime $p$. A space $X$ is called ${F_p}$-good when the map $X \to {F_{p\infty }}X$ is a $\bmod \text {-}p$ homology equivalence, and called ${F_p}$-bad otherwise. General examples of ${F_p}$-good spaces are established beyond the usual nilpotent or virtually nilpotent ones. These include the polycyclic-by-finite spaces. However, the wedge of a circle with a sphere of positive dimension is shown to be ${F_p}$-bad. This provides the first example of an ${F_p}$-bad space of finite type and implies that the $p$-profinite completion of a free group on two generators must have nontrivial higher $\bmod \text {-}p$ homology as a discrete group. A major part of the paper is devoted to showing that the desirable properties of nilpotent spaces under the $p$-adic completion can be extended to the wider class of $p$-seminilpotent spaces.References
- M. Artin and B. Mazur, Étale homotopy, Lecture Notes in Math., vol. 100, Springer-Verlag, 1969.
- Gilbert Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217–303. MR 122859, DOI 10.1007/BF02546390
- A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR 380779, DOI 10.1016/0040-9383(75)90023-3
- A. K. Bousfield, Homological localization towers for groups and $\Pi$-modules, Mem. Amer. Math. Soc. 10 (1977), no. 186, vii+68. MR 447375, DOI 10.1090/memo/0186
- A. K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361–394. MR 882428, DOI 10.2307/2374579
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- C. J. B. Brookes, Modules over polycyclic groups, Proc. London Math. Soc. (3) 57 (1988), no. 1, 88–108. MR 940431, DOI 10.1112/plms/s3-57.1.88
- Kenneth S. Brown and Emmanuel Dror, The Artin-Rees property and homology, Israel J. Math. 22 (1975), no. 2, 93–109. MR 389980, DOI 10.1007/BF02760158
- E. Dror and W. G. Dwyer, A long homology localization tower, Comment. Math. Helv. 52 (1977), no. 2, 185–210. MR 458417, DOI 10.1007/BF02567364
- E. Dror and W. G. Dwyer, A stable range for homology localization, Illinois J. Math. 21 (1977), no. 3, 675–684. MR 461499, DOI 10.1215/ijm/1256049018
- E. Dror, W. G. Dwyer, and D. M. Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977), no. 2, 242–254. MR 438330, DOI 10.1215/ijm/1256049410
- William Dwyer, Haynes Miller, and Joseph Neisendorfer, Fibrewise completion and unstable Adams spectral sequences, Israel J. Math. 66 (1989), no. 1-3, 160–178. MR 1017160, DOI 10.1007/BF02765891
- Eric M. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies, No. 104, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 676809
- P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419–436. MR 72873, DOI 10.1112/plms/s3-4.1.419
- Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0478146
- Martin Huber and R. B. Warfield Jr., $p$-adic and $p$-cotorsion completions of nilpotent groups, J. Algebra 74 (1982), no. 2, 402–442. MR 647247, DOI 10.1016/0021-8693(82)90032-1
- J. Lannes, Sur la cohomologie modulo $p$ des $p$-groupes abéliens élémentaires, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97–116 (French). MR 932261
- Haynes Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. MR 750716, DOI 10.2307/2007071
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- Daniel G. Quillen, An application of simplicial profinite groups, Comment. Math. Helv. 44 (1969), 45–60. MR 242156, DOI 10.1007/BF02564511
- Daniel G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. MR 231919, DOI 10.1016/0021-8693(68)90069-0
- Daniel Quillen, Higher $K$-theory for categories with exact sequences, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 95–103. MR 0335604
- David L. Rector, An unstable Adams spectral sequence, Topology 5 (1966), 343–346. MR 199863, DOI 10.1016/0040-9383(66)90025-5
- J. E. Roseblade, Applications of the Artin-Rees lemma to group rings, Symposia Mathematica, Vol. XVII, Academic Press, London, 1976, pp. 471–478. (Convegno sui Gruppi Infiniti, INDAM, Roma, 1973),. MR 0407119
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79. MR 442930, DOI 10.2307/1970841
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 335-359
- MSC: Primary 55P60; Secondary 20E18, 20J05
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062866-4
- MathSciNet review: 1062866