An asymptotic estimate for heights of algebraic subspaces
HTML articles powered by AMS MathViewer
- by Jeffrey Lin Thunder
- Trans. Amer. Math. Soc. 331 (1992), 395-424
- DOI: https://doi.org/10.1090/S0002-9947-1992-1072102-0
- PDF | Request permission
Abstract:
We count the number of subspaces of affine space with a given dimension defined over an algebraic number field with height less than or equal to $B$. We give an explicit asymptotic estimate for the number of such subspaces as $B$ goes to infinity, where the constants involved depend on the classical invariants of the number field (degree, discriminant, class number, etc.). The problem is reformulated as an estimate for the number of lattice points in a certain bounded domain.References
- Maurice Auslander and David A. Buchsbaum, Groups, rings, modules, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York-London, 1974. MR 0366959 J. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., vol. 99, Springer-Verlag, Berlin, 1959.
- Gerald B. Folland, Real analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR 767633
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI 10.1007/BF01393904
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Erich Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR 638719
- W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vol. I, Cambridge, at the University Press; New York, The Macmillan Company, 1947. MR 0028055
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Kurt Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys. 68 (1939), 93–102 (German). MR 0001242
- Stephen Hoel Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), no. 4, 433–449 (English, with French summary). MR 557080
- Wolfgang M. Schmidt, On heights of algebraic subspaces and diophantine approximations, Ann. of Math. (2) 85 (1967), 430–472. MR 213301, DOI 10.2307/1970352
- Wolfgang M. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height, Duke Math. J. 35 (1968), 327–339. MR 224562
- Jeffrey Lin Thunder, The number of solutions of bounded height to a system of linear equations, J. Number Theory 43 (1993), no. 2, 228–250. MR 1207503, DOI 10.1006/jnth.1993.1021
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 395-424
- MSC: Primary 11G35; Secondary 11H16
- DOI: https://doi.org/10.1090/S0002-9947-1992-1072102-0
- MathSciNet review: 1072102