The strong maximal function on a nilpotent group
HTML articles powered by AMS MathViewer
- by Michael Christ
- Trans. Amer. Math. Soc. 331 (1992), 1-13
- DOI: https://doi.org/10.1090/S0002-9947-1992-1104197-X
- PDF | Request permission
Abstract:
An analogue of the strong maximal function of Jessen, Marcinkiewicz, and Zygmund is shown to be bounded on ${L^p}$, for all $p > 1$, on a nilpotent Lie group.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- Hasse Carlsson, Peter Sjögren, and Jan-Olov Strömberg, Multiparameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc. 292 (1985), no. 1, 335–343. MR 805966, DOI 10.1090/S0002-9947-1985-0805966-X
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330 —, Hilbert transforms along curves, III. Rotational curvature, preprint, December 1984, unpublished. B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
- D. H. Phong and E. M. Stein, Singular integrals related to the Radon transform and boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 24, , Phys. Sci., 7697–7701. MR 728667, DOI 10.1073/pnas.80.24.7697 —, Hilbert integrals, singular integrals and Radon transforms, Acta Math. 157 (1987), 99-157.
- Hasse Carlsson, Peter Sjögren, and Jan-Olov Strömberg, Multiparameter maximal functions along dilation-invariant hypersurfaces, Trans. Amer. Math. Soc. 292 (1985), no. 1, 335–343. MR 805966, DOI 10.1090/S0002-9947-1985-0805966-X F. Ricci and P. Sjögren, Two-parameter maximal functions on the Heisenberg group, preprint.
- F. Ricci and E. M. Stein, Oscillatory singular integrals and harmonic analysis on nilpotent groups, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 1, 1–3. MR 822187, DOI 10.1073/pnas.83.1.1
- Fulvio Ricci and Elias M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), no. 1, 56–84. MR 937632, DOI 10.1016/0022-1236(88)90132-2
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), no. 1, 63–83. MR 722726, DOI 10.1007/BF01388531
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 1-13
- MSC: Primary 42B25; Secondary 43A15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1104197-X
- MathSciNet review: 1104197