Multipliers of families of Cauchy-Stieltjes transforms
HTML articles powered by AMS MathViewer
- by R. A. Hibschweiler and T. H. MacGregor
- Trans. Amer. Math. Soc. 331 (1992), 377-394
- DOI: https://doi.org/10.1090/S0002-9947-1992-1120775-6
- PDF | Request permission
Abstract:
For $\alpha > 0$ let ${\mathcal {F}_\alpha }$ denote the class of functions defined for $|z| < 1$ by integrating $1/{(1 - xz)^\alpha }$ against a complex measure on $|x|= 1$. A function $g$ holomorphic in $|z| < 1$ is a multiplier of ${\mathcal {F}_\alpha }$ if $f \in {\mathcal {F}_\alpha }$ implies $gf \in {\mathcal {F}_\alpha }$. The class of all such multipliers is denoted by ${\mathcal {M}_\alpha }$. Various properties of ${\mathcal {M}_\alpha }$ are studied in this paper. For example, it is proven that $\alpha < \beta$ implies ${\mathcal {M}_\alpha } \subset {\mathcal {M}_\beta }$, and also that ${\mathcal {M}_\alpha } \subset {H^\infty }$. Examples are given of bounded functions which are not multipliers. A new proof is given of a theorem of Vinogradov which asserts that if $f’$ is in the Hardy class ${H^1}$, then $f \in {\mathcal {M}_1}$. Also the theorem is improved to $f’ \in {H^1}$ implies $f \in {\mathcal {M}_\alpha }$, for all $\alpha > 0$. Finally, let $\alpha > 0$ and let $f$ be holomorphic in $|z| < 1$. It is known that $f$ is bounded if and only if its Cesàro sums are uniformly bounded in $|z| \leq 1$. This result is generalized using suitable polynomials defined for $\alpha > 0$.References
- Paul Bourdon and Joseph A. Cima, On integrals of Cauchy-Stieltjes type, Houston J. Math. 14 (1988), no. 4, 465–474. MR 998448
- L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413–428 (1974). MR 338337, DOI 10.1090/S0002-9947-1973-0338337-5 P. Dienes, The Taylor series, Oxford Univ. Press, London, 1931.
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- D. J. Hallenbeck and T. H. MacGregor, Radial growth and variation of bounded analytic functions, Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 3, 489–498. MR 969079, DOI 10.1017/S001309150003769X
- V. P. Havin, On analytic functions representable by an integral of Cauchy-Stieltjes type, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 13 (1958), no. 1, 66–79 (Russian, with English summary). MR 0095256
- V. P. Havin, Relations between certain classes of functions regular in the unit circle, Vestnik Leningrad. Univ. 17 (1962), no. 1, 102–110 (Russian, with English summary). MR 0152660
- R. A. Hibschweiler and T. H. MacGregor, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc. 105 (1989), no. 3, 615–621. MR 938912, DOI 10.1090/S0002-9939-1989-0938912-8
- S. V. Hruščev and S. A. Vinogradov, Inner functions and multipliers of Cauchy type integrals, Ark. Mat. 19 (1981), no. 1, 23–42. MR 625535, DOI 10.1007/BF02384467
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. MR 565451 B. Korenblum, private communication.
- T. H. MacGregor, Analytic and univalent functions with integral representations involving complex measures, Indiana Univ. Math. J. 36 (1987), no. 1, 109–130. MR 876994, DOI 10.1512/iumj.1987.36.36006
- Walter Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–242. MR 79093
- S. A. Vinogradov, M. G. Goluzina, and V. P. Havin, Multipliers and divisors of Cauchy-Stieltjes type integrals, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 19 (1970), 55–78 (Russian). MR 0291471 S. A. Vinogradov, Properties of multipliers of Cauchy-Stieltjes integrals and some factorization problems for analytic functions, Amer. Math. Soc. Transl. (2) 115 (1980), 1-32.
- Lawrence Zalcman, Real proofs of complex theorems (and vice versa), Amer. Math. Monthly 81 (1974), 115–137. MR 328028, DOI 10.2307/2976953 A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1968.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 377-394
- MSC: Primary 30E20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1120775-6
- MathSciNet review: 1120775