Galois groups and the multiplicative structure of field extensions
HTML articles powered by AMS MathViewer
- by Robert Guralnick and Roger Wiegand
- Trans. Amer. Math. Soc. 331 (1992), 563-584
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036008-5
- PDF | Request permission
Abstract:
Let $K/k$ be a finite Galois field extension, and assume $k$ is not an algebraic extension of a finite field. Let ${K^{\ast } }$ be the multiplicative group of $K$, and let $\Theta (K/k)$ be the product of the multiplicative groups of the proper intermediate fields. The condition that the quotient group $\Gamma = {K^{\ast } }/\Theta (K/k)$ be torsion is shown to depend only on the Galois group $G$. For algebraic number fields and function fields, we give a complete classification of those $G$ for which $\Gamma$ is nontrivial.References
- Michael Aschbacher, Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50–152. MR 511458, DOI 10.1016/0021-8693(78)90022-4 —, Finite group theory, Cambridge Univ. Press, Cambridge, 1986.
- J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR 860771, DOI 10.1017/CBO9780511623592
- Albrecht Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965), 71–73 (German). MR 170889, DOI 10.1007/BF01109932
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 0347959 —, Group representation theory, Part B, Dekker, New York, 1972.
- Edward D. Davis and Paolo Maroscia, Affine curves on which every point is a set-theoretic complete intersection, J. Algebra 87 (1984), no. 1, 113–135. MR 736772, DOI 10.1016/0021-8693(84)90163-7
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Walter Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), no. 1, 29–36. MR 915710, DOI 10.1090/S0002-9939-1988-0915710-1
- Robert M. Guralnick, A question of Stafford about affine pi algebras, Comm. Algebra 18 (1990), no. 9, 3055–3057. MR 1063350, DOI 10.1080/00927879008824060
- W. J. Haboush, Multiplicative groups of Galois extensions, J. Algebra 165 (1994), no. 1, 122–137. MR 1272582, DOI 10.1006/jabr.1994.1101
- Gerald J. Janusz, Algebraic number fields, Pure and Applied Mathematics, Vol. 55, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0366864
- Bao-Ping Jia, Splitting of rank-one valuations, Comm. Algebra 19 (1991), no. 3, 777–794. MR 1102985, DOI 10.1080/00927879108824169
- Masayoshi Nagata, Tadasi Nakayama, and Tosiro Tuzuku, On an existence lemma in valuation theory, Nagoya Math. J. 6 (1953), 59–61. MR 59898
- Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380 W. B. Stewart, Largely fixed point free groups, (unpublished).
- Michio Suzuki, Group theory. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR 815926, DOI 10.1007/978-3-642-86885-6
- Roger Wiegand, Picard groups of singular affine curves over a perfect field, Math. Z. 200 (1989), no. 3, 301–311. MR 978592, DOI 10.1007/BF01215648
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284 (German). MR 1546236, DOI 10.1007/BF01692444
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 563-584
- MSC: Primary 12F05; Secondary 12F10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1036008-5
- MathSciNet review: 1036008