Products of commutative rings and zero-dimensionality
HTML articles powered by AMS MathViewer
- by Robert Gilmer and William Heinzer
- Trans. Amer. Math. Soc. 331 (1992), 663-680
- DOI: https://doi.org/10.1090/S0002-9947-1992-1041047-4
- PDF | Request permission
Abstract:
If $R$ is a Noetherian ring and $n$ is a positive integer, then there are only finitely many ideals $I$ of $R$ such that the residue class ring $R/I$ has cardinality $\leq n$. If $R$ has Noetherian spectrum, then the preceding statement holds for prime ideals of $R$. Motivated by this, we consider the dimension of an infinite product of zero-dimensional commutative rings. Such a product must be either zero-dimensional or infinite-dimensional. We consider the structure of rings for which each subring is zero-dimensional and properties of rings that are directed union of Artinian subrings. Necessary and sufficient conditions are given in order that an infinite product of zero-dimensional rings be a directed union of Artinian subrings.References
- Jimmy T. Arnold and Robert Gilmer, Dimension theory of commutative rings without identity, J. Pure Appl. Algebra 5 (1974), 209–231. MR 371884, DOI 10.1016/0022-4049(74)90047-4
- H. S. Butts and L. I. Wade, Two criteria for Dedekind domains, Amer. Math. Monthly 73 (1966), 14–21. MR 194451, DOI 10.2307/2313916
- Paul-Jean Cahen and Jean-Luc Chabert, Coefficients et valeurs d’un polynôme, Bull. Sci. Math. (2) 95 (1971), 295–304 (French). MR 296065
- Jean-Luc Chabert, Un anneau de Prüfer, J. Algebra 107 (1987), no. 1, 1–16 (French, with English summary). MR 883864, DOI 10.1016/0021-8693(87)90068-8
- Kim Lin Chew and Sherry Lawn, Residually finite rings, Canadian J. Math. 22 (1970), 92–101. MR 260773, DOI 10.4153/CJM-1970-012-0
- Robert Gilmer, A note on two criteria for Dedekind domains, Enseignement Math. 13 (1967), 253–256 (1968). MR 236160
- Robert Gilmer, Integral domains with Noetherian subrings, Comment. Math. Helv. 45 (1970), 129–134. MR 262216, DOI 10.1007/BF02567320
- Robert Gilmer, On polynomial rings over a Hilbert ring, Michigan Math. J. 18 (1971), 205–212. MR 285522
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Robert Gilmer and William Heinzer, The Noetherian property for quotient rings of infinite polynomial rings, Proc. Amer. Math. Soc. 76 (1979), no. 1, 1–7. MR 534377, DOI 10.1090/S0002-9939-1979-0534377-2
- Robert Gilmer and William Heinzer, Some countability conditions on commutative ring extensions, Trans. Amer. Math. Soc. 264 (1981), no. 1, 217–234. MR 597878, DOI 10.1090/S0002-9947-1981-0597878-0
- Robert Gilmer and William Heinzer, Noetherian pairs and hereditarily Noetherian rings, Arch. Math. (Basel) 41 (1983), no. 2, 131–138. MR 719415, DOI 10.1007/BF01196868
- Robert Gilmer and William Heinzer, On the imbedding of a direct product into a zero-dimensional commutative ring, Proc. Amer. Math. Soc. 106 (1989), no. 3, 631–636. MR 969521, DOI 10.1090/S0002-9939-1989-0969521-2
- James A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, vol. 117, Marcel Dekker, Inc., New York, 1988. MR 938741
- Daniel Lazard and Patrick Huet, Dominions des anneaux commutatifs, Bull. Sci. Math. (2) 94 (1970), 193–199 (French). MR 271097
- Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
- Kathleen B. Levitz and Joe L. Mott, Rings with finite norm property, Canadian J. Math. 24 (1972), 557–565. MR 297820, DOI 10.4153/CJM-1972-049-1
- Paolo Maroscia, Sur les anneaux de dimension zéro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 56 (1974), no. 4, 451–459 (French, with Italian summary). MR 0389877
- Donald L. McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 (1985), 162–178. MR 797681, DOI 10.1515/crll.1985.358.162
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Fusao Shibata, Takasi Sugatani, and Ken-ichi Yoshida, Note on rings of integral-valued polynomials, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 5, 297–301. MR 859430
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 663-680
- MSC: Primary 13C15; Secondary 13E10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1041047-4
- MathSciNet review: 1041047