The union of compact subgroups of an analytic group
HTML articles powered by AMS MathViewer
- by Ta Sun Wu
- Trans. Amer. Math. Soc. 331 (1992), 869-879
- DOI: https://doi.org/10.1090/S0002-9947-1992-1044968-1
- PDF | Request permission
Abstract:
Let $G$ be an analytic group. Let $\Omega (G)$ be the union of all compact subgroups of $G$. We give a necessary and sufficient condition for $\Omega (G)$ to be dense in $G$ in terms of the action of a maximal compact torus $T$ of $G$ on the nilradical $N$ of $G$.References
- Dragomir Ž. Djoković, The union of compact subgroups of a connected locally compact group, Math. Z. 158 (1978), no. 2, 99–105. MR 498958, DOI 10.1007/BF01320860
- S. P. Wang, Compactness properties of topological groups. II, Duke Math. J. 39 (1972), 243–251. MR 296209
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 869-879
- MSC: Primary 22D05; Secondary 22E15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1044968-1
- MathSciNet review: 1044968