On twistor spaces of anti-self-dual Hermitian surfaces
HTML articles powered by AMS MathViewer
- by Massimiliano Pontecorvo
- Trans. Amer. Math. Soc. 331 (1992), 653-661
- DOI: https://doi.org/10.1090/S0002-9947-1992-1050087-0
- PDF | Request permission
Abstract:
We consider a complex surface $M$ with anti-self-dual hermitian metric $h$ and study the holomorphic properties of its twistor space $Z$. We show that the naturally defined divisor line bundle $[X]$ is isomorphic to the $- \frac {1} {2}$ power of the canonical bundle of $Z$, if and only if there is a Kähler metric of zero scalar curvature in the conformal class of $h$. This has strong consequences on the geometry of $M$, which were also found by C. Boyer $[3]$ using completely different methods. We also prove the existence of a very close relation between holomorphic vector fields on $M$ and $Z$ in the case that $M$ is compact and Kähler.References
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Charles P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), no. 3, 517–526. MR 842629, DOI 10.1007/BF01457232
- D. Burns and P. De Bartolomeis, Applications harmoniques stables dans $\textbf {P}^n$, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 2, 159–177 (French). MR 956764
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- N. J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), no. 1741, 173–191. MR 563832, DOI 10.1098/rspa.1980.0028
- N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. MR 623721, DOI 10.1112/plms/s3-43.1.133 S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Wiley, New York, 1969.
- Claude LeBrun, On the topology of self-dual $4$-manifolds, Proc. Amer. Math. Soc. 98 (1986), no. 4, 637–640. MR 861766, DOI 10.1090/S0002-9939-1986-0861766-2 —, Scalar-flat Kähler metrics on blown-up ruled surfaces, Institute for Advanced Studies, preprint. M. Pontecorvo, Ph.D. Thesis, SUNY at Stony Brook, 1989.
- Y. Sun Poon, Algebraic dimension of twistor spaces, Math. Ann. 282 (1988), no. 4, 621–627. MR 970223, DOI 10.1007/BF01462887
- Y. S. Poon, Twistor spaces with meromorphic functions, Proc. Amer. Math. Soc. 111 (1991), no. 2, 331–338. MR 1036990, DOI 10.1090/S0002-9939-1991-1036990-0
- Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR 0506253
- Shing Tung Yau, On the curvature of compact Hermitian manifolds, Invent. Math. 25 (1974), 213–239. MR 382706, DOI 10.1007/BF01389728
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 653-661
- MSC: Primary 32L25; Secondary 32J15, 32J17, 53C25, 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1992-1050087-0
- MathSciNet review: 1050087