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ABSTRACT. In studying the singularities of type A, of smooth maps between
manifolds N and P the Boardman manifold Xi-!--:10 in J®(N, P)
has been very useful. We will construct the submanifolds ZD; and ZE; in
J>®(N, P) playing the similar role for singularities D, and E; and study
their properties in its process.

0. INTRODUCTION

Let A, , D, and E, denote the types of the singularities of function germs
studied in [4]. When a C stable map germ f is C* equivalent to an un-
folding of a function germ with singularity A, , Dy or E; , we say that f has a
singularity A4, , D, or Ej at the origin respectively. Let N and P be smooth
(C*) manifolds with dimN =»n and dimP =p.

In his article [5], J. M. Boardman has constructed the submanifold X/, I =
(max(n-p+1,1),1,...,1,0) in J>*(N, P) for A, and introduced useful
tools such as the total tangent bundle and the higher intrinsic derivatives. They
have been important to study the topological properties of the singularities Ay
of smooth maps in [1 and 2].

In this paper we shall study the local structures of the singularities D, and
E, and construct the submanifolds £D, and XE; in J*°(N, P) (see (3.8)
and (3.10)) playing the similar role as £/ for A . Even though XE, is easy to
construct as seen in §4, XD, needs some elaborate arguments using the higher
intrinsic derivatives in §3 as Thom-Boardman submanifolds have done in [5].
Let X, be one of D; and E;, then XX, has the property that if j°f of a
smooth map germ f is transverse to XX, at x,then f is C> stable and has
a singularity X, at x. The results of the paper are useful, for example, for the
calculation of their Thom polynomials of smooth maps or singular foliations
having only these singularities and for the elimination of those of the highest
order by their vanishing property and A-principle (see [3 and 7]).

We shall review the definition of singularities A4, , D, and E) and the results
of [5] in §1 and prepare some lemmas in §2. In §5 the connected components
of ZX, will be described.

Received by the editors March 3, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 58C27; Secondary 57R45.
Key words and phrases. Singularities, jet bundles, smooth map germs.

© 1992 American Mathematical Society
0002-9947/92 $1.00 + $.25 per page




640 YOSHIFUMI ANDO

The author wishes to thank the referee for valuable suggestions concerning
the presentation of this paper.
1. PRELIMINARIES

Throughout the paper N and P denote paracompact and Hausdorff C*
(simply smooth) manifolds of dimensions n and p respectively. We say that
a smooth map germ f: (N, xo) — (P, yo) has the singularity of type A, Dy
or E, at xp is f is written as below respectively when we take suitable local
coordinates (y;,...,y,) of P near y, and ones of N near xp as

(X015 oee s Xpks Xps oee s Xne1 5 S05 vv s Sk—2s U) for A4,
(X1 oo s Xp—ks Xp sy evn s Xn2, 505 -0 5 Sk—2, U, V) for D and Ej .

Let n > p and we set (see [4, 6, and 9]),
yio f(x)=x; (1<i<p-k),
yiof(x)=sipsk—1 (P—-k<i<p-1),
and y, o f(x) is as follows for A, D, or Ej respectively.

k—1

(Ax) dxl ok xI + ) s 2kt (k>1),
=1
k-2
(D) Q+utv vk + Y st (k> 4),
=2
(Ee) 0+ C £ v* + squv?,
(E7) 0+ C + uv? + 5403 + ssv*,
(Eg) Q0+ C +v° + s4uv? + 5503 + sguv?,

where Q =4x}+---+x}_, +sou+s5v and C = u® + 5uv + 5302

Let J™(N, P) denote the m jet space (0 < m < o0). Next we shall review
the fundamental properties of the Boardman submanifolds X/(N, P) (simply
2y of J°(N, P) and the useful tools introduced in [5] for the symbols I
related to A4, , D, and E; (see also [9, 10 and 11]). We shall utilize them to
study the local structures of these singularities in the sequel.

Let nf : JS(N, P) — J'(N, P) be the forgetting map for s > ¢t and n}
and n}', the canonical projections of J™(N, P) onto N and P mapping an
m-jet onto its source and target respectively. Let D denote the total tangent
bundle over J>®(N, P) (see the details of [5, Definition 1.9]). This notation
is related to the derivative of smooth functions on J*°(N, P). A real valued
function ¢ defined on an open set U of J*°(N, P) is called smooth if there
is a smooth function ¥ on some open subset of J” (N, P) for a finite number
m such that ¢ = wony? on U. As seen below D is isomorphic to nj(TN)
and any smooth section d of D over U determines a smooth function d¢ on
U characterized as follows. Any vector field d’ on an open set of N induces
a smooth section d of D such that d¢ is determined by

(1.1) do(jf) =d'(¢oj*f)x
for any smooth map germ f: (N, x) — (P, f(x)) with jfe U.
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For a system of local coordinates (x;, ..., Xx,) near x € N, we obtain
smooth sections dy, of D coming from 9/9x; by (1.1) (they are denoted by
the symbol D; in [5]. But we must use them for singularities Dy ). Therefore
D is defined as the vector bundle such that its any smooth section of D is
locally represented as a linear combination of dy, over smooth function on
J*(N, P),say Y. ¢idy, . For any smooth section d of D it follows from (1.1)
that

(1.2) dooj=f=(U>N)d) g j”f).

Next we see the results about the higher intrinsic derivatives defined over
 for (n-p+1,1---10), (n—-p+1,2,0) and (n—-p+1,2,1---10).
We will formulate them over J™ (N, P) for a sufficiently large number m (see
[5, Lemma 1.12, 2.20 and p. 412]), even though they first have been done
over J®(N, P). Let D' = (nay)*(TN) and P = (np)*(TP). Then we have
the homomorphism d, : D’ — P over J”(N, P) and let X*?*! denote the
subspace of all m jets z with dim(Ker(d, ;)) = n—p+1 where d; ,:D}, - P,
is the restriction of d; to the fibers over z (throughout the paper we shall use
the similar notation). Set K; = Ker(d,) and Q = Cok(d;) over X" ?*! (note
that dimQ = 1). The second intrinsic derivative

d, :K; - Hom(K,, Q) over X" 7*!

defines X"~P*1./ as the subset of all z € £"?*! with dim(Ker(d; ;) = j.
Set K, = Ker(d,) over £"P+!.J Then if j = 1, Cok(d,) is isomorphic to
Hom(K;, Q) over X"~P+l.J For a sequence Iy = (n—p+1,1---1) of k
integers the definition of X/x proceeds by induction on k. In this process it is
important to construct the (k + 1)th intrinsic derivative (k > 2),

dis1 : Ky » Hom(® K, , Q) over Tk
and then X/ is defined to be the set of all z € £/ such that dy, , vanishes.

We define Tl-0 = Th\Zh+ as sets.
If n>p and j =2, the third intrinsic derivative

ds : K; » Hom(QO%K;, Q) over X" 7+1,2

define £"P+1.2.1 10 be the set of all jets z € £"~P+!-2 with dim(Ker(d;, ,)) = 1
(throughout the paper V;O---QV; denote the symmetric product of subbundles
Vi, ..., V; of a vector bundle V' in the ¢th symmetric product O'V). Set
K; = Ker(d;) and then Cok(d;) is isomorphic to Hom(K3 O K;, Q) over
n-p+1.2,1 The 4th intrinsic derivative

ds: K3 —» Hom(K; OK; OK;, Q) over Trpt!. 2.1

defines X£"~7+1.2.1.1 a5 the set of all jets z € "~P+!.2.1 such that d4 , van-
ishes. Let K4 = K3 over X"7+1.2.1.1 and then Cok(d,) is isomorphic to
Hom(QO3K3 O K;, Q). Finally we have the 5th intrinsic derivative

ds : K3 — Hom(QO’K; O K;, Q) over "7+ 1.1

We set Ir—p+1,2,1,0 _ yn—p+1.2, l\zn—p+l 2,11 and ¥r—p+1.2,1,1,0 44 the sub-
set of all jets z € "~P+1.2.1.1 guch that ds_, is injective.

There are important facts about the intrinsic derivatives. For every symbol
I, = (iy, ..., i) appeared above we let K, ., = Ker(d,,;) and P, denote the
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target bundle of d,.,. Then d,,, is extended to the surjective homomorphism
(denoted by the same letter)

diyy : TE-1 2 - P, over T

such that Ker(dy,,) = TZ* . By [5, (7.7)] we have that K, N TZ/-1 = K, over
Tk

Here we briefly sketch how to define d,,, for I, = (iy,..., i) since it
will be used in the construction of XD, in §3. Take local coordinates system
(X1,...,xn) of N near x and (y;,...,»,) of P near y. Forany z of Tk

with 7y(z) = x and 7mp(z) =y we can choose a special I;-flag (not necessarily
unique) which is a series of subbundles Kj of D|U,

DIU=K,DK| DK, > - DK

with dimK} = j, and K}|(Z" N U) = K,|(Z" N U) and a set of n — i, smooth
functions ¢; on U (j=1,..., n— i) satisfying

(a) rk(dx,(¢j))i<i<n, 1<j<n—i, = n—ix on U (then wesay that ¢, ..., cs—;,
are totally independent on U).

(b) For any smooth section d’ of K;, d’(c;) is identically zero for n—i,_; <
J<n—1i.

(¢) ¢y ..., cnj, factor through np and for n —i;_y < j<n-1iy, cj €
I Ly TN &F (mpU) where T, denotes the module of all smooth sections
of K, on U and # (npU), the module of all smooth functions on npU .

Then the R-linear map

T1®1",_1®'~®I“1®my—'R

is defined by mapping d'®---®d' ® ¢ onto ((d'---d')$)(z). It turns out that

it vanishes when ¢ € /)zf, or d/ € »,I'; for some j and that it is symmetric.

Hence it induces the homomorphism
K,’ZO“-OK]’Z@m},/mf) — R

since K, ; = I';/~.I;. By identifying Hom(»,/»%, R) with TP, we obtain
the homomorphism

h:K,Q---OK, =P overZinU

although it may depend on the choice of a special flag. However it has been
shown in [5] by using the intrinsic derivatives due to I. R. Porteous that the
composition of A, and the projection 7 : P — Q is invariantly defined when
restricted as the following homomorphisms (we will use the notations below).

dy= mohy| O*K, fort=2, |

d=mnoh|O'Ky, forI=(n—-p+1,1---1),

dy= mohy O°K,

dy=nohd O°KsOK, forl=(n-p+1,2,1---1).

di = mohs| O*K3 O K,

Moreover even though K, , Q and 4, are defined over J>°(N, P), they uniquely
factor through J™(N, P). Therefore we shall use the same notation for these
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notions over both of J™(N, P) and J*°(N, P) throughout the paper. Thus
d, is defined to be the homomorphism induced from 4.

2. LEMMAS

We shall prepare two lemmas about Hom(QO3R?, R) to study d3. Let u
and v be the dual basis of (1,0) and (0, 1) of R?>. We always identify
Hom(QO3R?, R) with O3Hom(R?, R) and then its element ¢ is written as
¢ = aud+bu*v+cuv?+dv? under the symmetric product. By the isomorphism
Hom(R?, Hom(O?R?, R)) = Hom(R? ® (O?R?), R), ¢ induces a homomor-
phism ¢’ : R2 - Hom(QO?R?, R) 2 O?Hom(R?, R). It is easy to see that ¢’
is written as

0'(s, t) = (1/3)(s0/0u + 18 /9v)(9).

As shown in [4] Hom(QO3R?, R) is decomposed into the five orbit manifolds
of the action by GL(2) through u?v +v3, u?v, u® and 0. We denote them
by Sf , S5, Sg and O respectively. Let H be the set of all quadratic forms
of rank 1 or 0 in Hom(Q?R?, R). The first lemma is as follows.

Lemma 2.1. For any element ¢ of Ss, (¢')~'(H) is a one-dimensional subspace
of R?%.

Proof. As Ss is the orbit through u?v, ¢ is written as ¢ = (u o A)*(v o A)
where 4 = (3 5) € GL(2). It is easily seen that

cs+dt as+bt) (qu>

3(p’(s’t):(qu’voA)(as+bt 0 voAd

Therefore (¢')~!(H) is the kernel as+ bt =0 of uoA4. Q.E.D.

Let L C S5 x R? be the set of all pairs (¢, s, t) such that ¢'(s, t) € H. Let
n: L — S5 be defined by n(p,s,t)=¢.

Lemma 2.2. (i) n: L — Ss is a vector subbundle of the two-dimensional trivial
bundle over Ss .

(ii) The normal bundle of S5 in Hom(Q3R?, R) is isomorphic to the vector
bundle Hom(QO3L, R).

(iii) Let L, be a fiber of L over ¢ € Ss. Then ¢|L, O L, O R?* is a null
homomorphism.

Proof. (i) Consider the action
u:GL(2) x Ss x R? — S5 x R?

defined by u(A4, ¢(u,v), (s, t)) =(p(ucA,voAd), (s, t)4). Then L — Ss is
the orbit through a fiber over u?v and thus is a vector bundle.

(ii) Any element of the vector bundle Hom(Q3L, R) over Ss is written as
a pair (¢, c) for ¢ € S5 and a linear map ¢ : O*L, — R. It induces the linear
map ¢, = con, where m, is the orthogonal projection of R? onto L, . This
defines a smooth map

h : Hom(QO3L, R) - Hom(QO’R?, R)

by h(¢, c) = ¢ +c,. To prove (ii) we shall show that 4 is an embedding near
Ss. It is enough to prove it near u?>v by the action since 4 is an embedding
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on the zero section. Any element ¢ € S5 close to u?v is written uniquely as
(u+ ajv)*{(1 + a2)v + asu}. Then L, is the line s +a;¢ =0 and

Cp = as(—ayu+v)>.

So (ay, a3, as, a4) is the local coordinate system of Hom(Q3L, R) near u?v .
Therefore we obtain

9 +cp=(u+av) (1 +a)v + asu} + ag(—aju + v)3
= (4 + 2a;uv){(1 + a;)v + asu} + a4v’ modulo (a;, az, as, as)?,
= (1 + ay)u?v + 2a,uv? + azu® + a4v3 modulo (ay, a;, as, as)*.

Hence the Jacobian of 4 at u?v equals d(ay, 2a;, as, as)/0(a;, a2, as, az) =
—2. This means that 4 is a diffeomorphism near u?v .

(iii) Again it is enough to show (iii) for ¢ = u?v. Then L, istheline s=0.
Under the identification Hom(QO?R?, R) = O*Hom(R?, R), ¢|L, O L, O R?
is identified with the null homomorphism since u|L, =0. Q.E.D.

By considering the branches of solutions of ¢ =0, L is uniquely extended
to the line bundle (denoted by the same letter) over the image U(Ss) of a
small neighborhood of the zero section of Ss by 4 in proof of Lemma 2.2
where # is a diffeomorphism. In fact every element of U(Ss) is written as
9 +¢p = (uoA)?(voA)+e(wod)? for asufficiently small number ¢. Then
the fiber L,,., is defined as the line annihilated by uo 4. Moreover it is clear
that ¢ + ¢, € Ss if and only if ¢ + ¢, O3 Lyic, is a null homomorphism.
The decomposition of Hom(Q3R?, R) into Sy, Ss, Sg and 0 induces that
of Hom(QO?3K;, Q) into five manifolds. We denote them by the same notation
together with U(Ss) and L over U(Ss).

3. SINGULARITIES A; AND Dy

Let , =(n—p+1,1---1) be a sequence of k integers. It is well known
that a smooth germ f:R"”,0 — R?, 0 is C*> stable and has a singularity A
at the origin if and only if j™f is transverse to /-0 and j™f(0) € k-0,
In studying global topological properties of singularities 4, in [1 and 2] T’
together with tools reviewed in §1 has played an important role. In order to
study singularities D, and E; we shall construct the submanifolds XD, and
SE, in J™(N, P) with the similar properties as those above of X’ in this
section. In the following definition consider the vector bundle map (§1)

d;: O’K; — Q over T"r+1:2.0
as the smooth section of Hom(Q3K,, Q) over X"—7+!.2.0,

Definition 3.1. We define the subsets ZD;E(N , P) as (dj)~! (Sjt) and the sub-
sets ZDs(N, P) as (d})~!(Ss) in Z"=P+1.2.0(N  P) (we usually neglect (N, P)
in this paper).

Let U(Ds) = (d5)~'(U(Ss)) and L be the induced subbundle (d})*L of
K, . The restriction of d} to Q3L over U(Ds) is denoted by

(3.2) r3:O’L - Q over U(Ds)
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and considered as the section of Hom(Q3L, Q). It follows from the above
remark that z € U(Ds) liesin XDs if and only if 73 , is a null homomorphism.
For an element z € £*~7+1.2.0 with ny(z) = x and 7p(z) =y, we can choose
local coordinates (x;, ..., x,—2, %, v) of N near x and (y,...,y,) of P
near y such that z is represented as j™ f(0) with

yiof(x)=x; (1<i<p-1),

(3.3)
Yoo f(X)=Ex) k- kx] o+ f(X1,..., Xpo1, U, V),

where f lies in the ideal (x,, ..., Xp—1, U, v)?. Itis easily checked that K, ,
is spanned by dy,, ..., dx,_,,dy, d,, Ky . by d,,d, and Q; by the image
of 8/9y,, say e.

Lemma 3.4. With the notation above let d' = a'd,+b'd, in K, , with constants
a and b’ (i=1,2,3). Then

3
di ,(d'Od*Qd? = [(]’[(a"a/au + bfa/av)jf) (0)] e.
i=1

Proof. Recall a special (n —p + 1, 2, 0)-flag defined near z, D D K| D K}
introduced in §1. Let K| be the set of all vectors annihilating functions y;
(i=1,...,p—1) considered as functions on a neighborhood of z through
np . Therefore K/|j™ f(Ux) is spanned by d,, , ..., dx,_,, du, d, where U, is
a neighborhood of x. Since j™ f(U,) is locally a submanifold of J™(N, P),
K| isspanned by n—p+1 vector fields v; (p < j < n) suchthat (j”f)*(v;) =
0/0x; (j<n-=2),(j"f)*(vp—1)=0/0u and (j™f)*(vn) =0/0v . In the set
consisting of all smooth functions d(y,) where d is any smooth vector field
of K| near z (note that as 4 kills y,, ..., y,_, this set is well defined), the
functions v;(y,) (p < j < n—2) constitute n—2 totally independent functions
together with y;, ..., y,—; near z (see §1). For, v;(y,) (j < n—2) equals
+2x; over j™f(U) by (1.2) and

vj(yp) o j™f = (") (v))(¥pompojmf)

=0/0xj(ypo f)
= % 2Xj .
Then K, is the set of all vectors killing y;, ..., y,—1 and v;(y,) (p <j<n-2)

in K| near z. It is easily checked that K)|j” f(U) is spanned by d, and d,
and K, by the extended vector fields v,_; and v,. Hence it follows from
(1.1) and (1.2) that

di ,(d' Od*Od’) = (h3(d'®d*@d*>®y,)|)e
= ((d'd*d*(yp)) o j™f(0))e
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and
(d'd*d>(yp)) o j™f = ((J" /) d" ) d*d>(yp) 0 j™ f)
= (a'0/0u+b'9/0v)(((J" ) d*)(d?yp) © j™ 1))

2
= [[(@'a/0u+ b'd/0v)((j" ) d®)(vp © J™ f)

=1
3
( (a'8/0u + b"a/av)) WpoJj™f)
i=1

-
(H(aia JOu+b'd /av)> f).

i=1
This proves the lemma. Q.E.D.

Proposition 3.5. d}: 2"=7+12.0  Hom(Q3K;, Q) is transverse to Ss and so
2Ds is a submanifold of £"~?*'-2:0 with normal bundle Hom(Q3L, Q).

Proof. Let X2 2*1-2:0 be the fiber of £"~7+1.2.0 gver (x, y). We consider the
submanifold S in X2 7*!2:0 which consists of all m jets j™f(0) where f is
represented as in (2.5) and f variesin (x|, ..., X,_, %, v)? sothat f,,, fu
and 71“, generate (Xy, ..., X,—1, U, v)> together with x,..., x,—p. The
vector fields d,, d, and e determine the trivializations K|S = S x R? and
QIS = S xR and d}|S: § — Hom(QK;, Q)|S = S x Hom(Q3R?, R) s
calculated by Lemma 3.4. Since (d}|S)~!(Ss) = SNZDs and (d}|S) is surjective
onto the second component, d; is transverse to Ss. Lemma 2.2 shows that the
normal bundle of D5 is isomorphic to Hom(Q3L, Q) on SNZDs. Therefore
the assertion follows all over £Ds. Q.E.D.

Let D D K| DK, be aspecial (n—p+1, 2, 0)-flag on a small neighborhood
U of ze UNnU(Ds) and L', an extended line bundle of L in K over U.
Let I' be the set of all smooth sections of L'. For z with ny(z) = x and
np(z) =y we define
h[‘z N ®r®f7Zy - R

by b (d'® - ®@d' ®@¢p) =d'(---(d'¢))(z) where d’ € and ¢ € »,. When
z=jmf(0), let a, denote the set of germs « € , such that ao f € »2. We
prove the following.

Lemma 3.6. Let z € UNU(Ds). If h; . vanishes for every j with 1 < j<t,
then h; , induces h; ;: Q'L ® m, //rzf, — R such that the following diagram
commultes.

QTem, 25 R

| H

hi.
—_

O'L; ® (ay/ay N ’”3) — O'L: ®”Z_v/’”_%z R

where pr and i are induced from the projections m, — m, /mf,, I'>T/m I
L. and the inclusion ay/a, N\ m? — m,|m?% respectively.
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Proof. Notice that the null homomorphisms d,|L; and d5|L,QL; over U(Ds)
are induced from 4, ; for ¢t = 1 and 2 with similar commutative diagram.
Since L, & I'/».,I", we need to show for the proof that A, , vanishes on
d'®d" "' ®---®d' ® a when ecither one of d/ lies in ».I" or a in »2. Itis
very like the proof of [5, Theorem 4.1] and so we omit it. Q.E.D.

Lemma 3.7. The homomorphism h, . does not depend on the choice of a special
flag DOK| DK, and L.

Proof. We notice that L over a smooth submanifold U(Ds) of £"—7*1.2.0 g
a subbundle of the bundle K,|(U(Ds)). Let I'yp,) be the set of all smooth
sections of L. Then we can define the following homomorphism k; , and

75,,2 similarly as 4, , and E,z such that the following diagram commutes,

OT®a, —— OL:®a/ayNmi —= R

l

OT(py) ® (np|U(Ds))*ay —— O'L: ® (np|U(Ds))*(ay/ay N 7})

where the derivative of a smooth function on U(Ds) by a vector field of Ty,
in the definition of k, . is the usual one on a smooth manifold of finite dimen-
sion and the vertical maps are induced from the restrictions of T to I'yp,) and
np|U(Ds). Then the lemma follows from the fact that k; . is independent of
the choice of a special flag and L'. Q.E.D.

Definition 3.8. We inductively define the set D, (N, P) as the set of all
jets z € U(Ds) such that Zj,z is defined and vanishes for all j < ¢ and set
IDis\(N, P)=ED, (N, P)\ED,;2(N, P) (we usually neglect (N, P) in this
paper). We define the homomorphism

el O’L|ZE,+1 — Q|Zﬁt+1
so that r, . is the induced one from %, . (or k, ) by the identification of
Hom(ay/a, N2, R) with Q..

Remark 3.9. Notice that r3 in (3.8) coincides with r3 in (3.2). It will be seen
that 4, . is useful in the calculation of r, . although k, . is not so (see proof
of Theorem 3.10).

Theorem 3.10. The set ZEkH_ is a submanifold of J®(N, P) of codimension
n—p+k+1 with UDs) DEZDs DED¢ D - D XDy, D --- satisfying that the
intrinsic derivative of ry ,

d(ry) : T(EDx41)|EDy42 — Hom(O*K, Q)|ZD;,,

is surjective, that is, r, is transverse to the zero section when considered as the
section of Hom(Q*L, Q)|ZDy,, .

Proof. Notice that for k = 3 (LD, means U(Ds)) r; is, by definition, nothing
but (dj| O*L)|U(Ds) and the assertion follows from Proposition 3.5. For any
z € £Dy4 , we can choose suitable local coordinates (x|, ..., xX,_2, #, [) near
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x =ny(z) and (y;,...,y,) near y = mp(z) such that z = j™ f(0) and

“ yiof=xi (1<i<p-1),
E3 —_—
ypof=%xtt-txi+utl+ f(xi, ..., xpo1,u, 1),

where f € »2 and f(0,...,0,u,l) € {u, [}*. Then it is easily checked by
the similar arguments as in Lemma 3.4 that L' is spanned by a vector field
d with (j"™f)*d = 9/08] near x. Consider the submanifold S in XDy,
consisting of all j™f(0) where f is asin (x) and f varies so that j™f(0) €
XDy, . Then L|S is spanned by d; and r, (¢t < k) is calculated as follows.
Let d' €T with (j”f)*d' = a'd, for a constant a’. Then

d-- d()’p()

b (d'® - ®d ®y,) )
d'---d'(y,) °]mf|x 0
(

t—

Il
~— ~—

(
= (
(" f)d")((@ =" d'(vp)) o J™ flx=0
(0’0/31) (@t d (1)) 0 " )lx=0

t

= [1@8/8D)(yp © ™ =0

Jj=1
=d'a'™'---a'd'f/81'(0)

Hence it follows that
(3.11) r,:(a'dyQ---Qa'd) = (a'a'""---a'0'f/01'(0))e

Thus for every k, SN ZDy,, is determined by the equations 8'f/9/(0) =
0 for 1 <t<k-1. Since z € SNIDy,; lies in IDy,, if and only if
A% f/81%(0) = 0, it is easily checked that r, is transverse to the zero-section at
any point z € £Dy,,. Q.E.D.

Corollary 3.12. The normal bundle of Dy, is isomorphic to

Hom (K, 8 (O*K,) @ (@Q'L) ) ’zﬁ,m.

Remark 3.13. Let (x,,...,Xs_2,u,l) be the coordinates of R”"” and
(15 ---5Yp),thatof R?. Let f:R",0— R?, 0 be a smooth map germ such
that yjof=x; (1<i<p-1)and y,of € »2 and that the rank of n—p—1
matrix (0%ypo f/0x:0X;)p<s,i<n—2 is n—p—1 at the origin. Then dg,z is cal-
culated by the formula of Lemma 3.4 for z = j™ f(0). Furthermore if dj , €
Hom(QO3K; , Q.) is represented by the cubic form 2/ and 8’y,of/81/(0) =
0 for 1 < j<t—1,then r; , isalso calculated by the formula of (3.11). This is
easily checked by proving the following fact. If we represent as y,o f = y,0 f—
f+f where f=y,0f(x1,...,X,—1,0---0, u, ), then there exists a local
diffeomorphism: (X;, ..., Xp—2, U, [) = (X1, .o, Xpo15 Xps oen s Xp_g» U, 1)
such that y,o f = :i:x,’,2:|:~~:i:x:,2_2 X1y e s Xpor, U, 1)
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4. SINGULARITIES Ej

We shall define the submanifold XFE, by using the notation and the re-
viewed results in §1. First we have the following exact sequence and d, : K; —
Hom(O%K3 O K;, Q) over X#—r+1,2.1,

0 — K3 — K, -2 Hom (K, O K, Q) — Hom (K; O K;, Q) — 0.

The normal bundle of X#—?+1.2.1 jn ¥n-P+1.2 j5 jsomorphic to the vector
bundle Hom(QO?K3 O K;, Q). By definition X*~7+1.2.1.0 g the set of all jets
z e ZrP+L. 2.1 such that dj , does not vanish.

We define ZE¢ as the set of all z € Z"~7+1.2.1.0 sych that d; ,| O* K3
does not vanish and set TE; = T*P+1.2.LO0\TE. [t is easily checked that if
we consider dj | O*K; as the section of the bundle Hom(QO%K3, Q) over
Tr—p+1.2.1,0 "then it is transverse to the zero section. Thus XE; is a subman-
ifold and the intrinsic derivative

d(d; ,): TZ" P12 L.O5E; — Hom(O%K3, Q)
is surjective.

Lemma 4.1. The normal bundle of LE; in X"—?+1.2.1.0 js isomorphic to
Hom(O*K;, Q)[ZE; .
We define XEg as the set of all z € E"~P+1-2.1.1.0 such that dj .| O° K4

does not vanish. It is reasonable to set TE¢ = X"—P+1.2.1 gpd YE; = TE; U
Tr-p+l.2.1.1 - For by the similar argument above d ,| O* K3 over Tr—r+!.2.1
is transverse to the zero section and its inverse image of the zero section, which
is nothing but £E;, becomes a submanifold.

Proposition 4.2. The normal bundle v, of LE, in J>*(N, P) are as follows.
ve = Hom(K; & O’K; @ O’K3 O K3, Q)|ZEs,
v; 2 Hom(K; ® O’K, ® O’K; O K> & O*K3, Q)|ZE7,
and
vs = Hom(K; ® O’K; @ O’K3; O K, @ O’K3 O K3, Q)|ZE;.
The following theorem is an expected one and we omit its proof (see [4 and
8, Proposition 7.4]).

Theorem 4.3. Let X, denote D, or E,. Suppose that for a smooth map germ
f:R* 0> R?, 0, j™f is transverse to X, at the origin and j™ f(0) € £X, .
Then f is C*® stable and has a singularity X, at the origin.

5. CONNECTED COMPONENTS

In this section XX, denote the fiber of X, (R", R?) over the origin (0, 0).
We shall interpret the connected components of XX, in our terminology and
the result will be proved by the canonical forms of singularities X in [4] and
known essentially (see, for example, [6]).

Let z € ZX; . Then d, . induces the nondegenerate quadratic form denoted
by g;: (K, /K2, ) O (K;,:/K3, ;) — Q.. By taking an orientation of Q. , we
can consider the index of g, denoted by i(z) and so we define the semi-index
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s(z) as min(i(z), dim(K, ./K; ;) —i(z)). Let ZX; ; be the set of all jets
z € X, with semi-index s.

Now we first deal with X4, = X#—p+1L.110 If § £ 1/2(n — p), we can
determine the orientation of Q, denoted by 0;(z) so that g, is represented as
XF++ X2, | =X} —---—x}_, under a basis of K; ;/K; .. On the other
hand if k + 1 is even, the orientation of Ok“Kz, . induced from every one of
K, . does not depend on its choice (dimK;, , = 1). Therefore the isomorphism
d;, tzt OK*'K, , — Q; in §1 determines the second orientation 0,(z) of Q,
coming from the above orientation of O**'K, ,. So when s # 1/2(n — p)
and k + 1 is even, we say that z € X4, has plus or minus sign depending on
whether 0,(z) coincides with 0,(z) or not.

Definition 5.1. When s # 1/2(n — p) and k + 1 is even, we define Ei",f to
be the set of all jets z € 7" with sign +.

Next we consider XD, andlet n >p>2. If s#1/2(n—p—1) and k + 1
is even, then we can determine the orientation 0,(z) of Q, for z € D, so
that g is written as x; + -+ X2, | — X7, —--- — x2_, under a suitable
basis of K; ,/K, .. The uniquely determined orientation of Q**!'L, induced
from every one of L. induces the second orientation 0,(z) of Q, by the
isomorphism 7y, ; : O**'L, — Q.. Then we define the sign of z similarly.
If K+ 1 is odd, then there exist two isomorphisms

s :OF'L—-Q and dj :L®K,;/LeK,;/L—Q

induced from dj by (iii) of Lemma 2.2. Since {®¢ is trivial for a line bundle
&, they induce the isomorphism

"n—1

d
L%"OIH‘]L&Q}—’L@KZ/L@KZ/LEL'

We say that z has plus or minus sign depending on whether it preserves the
orientation of L, or not.

Definition 5.2. When (i) s # %(n —p—1)and K+ 1 iseven or (ii) k+ 1 is
odd, we define ZD,f, , to be the set of all jets z € ZD; ; with sign +.

As for E;, when s # %(n — p — 1), there exists the determined orientation
of Q; . as above. When k = 6, (O%K3 has the unique orientation. Since
d;|O*K; is isomorphism, we say that z € ZE¢ has plus or minus sign depending
on whether d; , preserve the orientation or not.

Definition 5.3. When s # 3(n—p— 1), we define ZE;"  to be the set of all jets
z € XE¢ s with sign +.

The following proposition is an expected one and will be proved by consid-
ering the normal forms of the unfoldings of smooth functions with singularity
X (see also [3]). So we omit its proof.

Proposition 5.4. Let n > p > 2. Then
(A)If s # 3(n—p) and k + 1 is even, then Zi‘ f is connected. Otherwise

Y0 is connected.
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(D) If (i) s # %(n—p— 1) and k+1 isevenor(ii) k+1 is odd, then }:D,f’s
is connected. Otherwise LDy ; is connected.

(E) ZEGi‘S is connected only for s # %(n —p —1). Otherwise XE; ; is
connected.
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