On local structures of the singularities $A_ k\;D_ k$ and $E_ k$ of smooth maps
HTML articles powered by AMS MathViewer
- by Yoshifumi Ando
- Trans. Amer. Math. Soc. 331 (1992), 639-651
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055564-4
- PDF | Request permission
Abstract:
In studying the singularities of type ${A_k}$ of smooth maps between manifolds $N$ and $P$ the Boardman manifold ${\sum ^{i,1, \ldots ,10}}$ in ${J^\infty } (N,P)$ has been very useful. We will construct the submanifolds $\sum {D_k}$ and $\Sigma {E_k}$ in ${J^\infty } (N,P)$ playing the similar role for singularities ${D_k}$ and ${E_k}$ and study their properties in its process.References
- Yoshifumi Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985), no. 3, 471–487. MR 792988, DOI 10.2969/jmsj/03730471
- Yoshifumi Ando, On the higher Thom polynomials of Morin singularities, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 195–207. MR 890484, DOI 10.2977/prims/1195176850 —, The homotopy principle for singularities ${A_k},{D_k}$ and ${E_k}$ of smooth maps, preprint.
- V. I. Arnol′d, Normal forms of functions near degenerate critical points, the Weyl groups $A_{k},D_{k},E_{k}$ and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25 (Russian). MR 0356124
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57. MR 231390
- James Damon, Topological properties of real simple germs, curves, and the nice dimensions $n>p$, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 3, 457–472. MR 602300, DOI 10.1017/S0305004100058369
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2 J. M. Mather, Finitely determined map germs, Publ. Math. Inst. Hautes Études Sci. 35 (1968), 127-156. B. Morin, Formes canonique des singularités d’une applications différentiables, C. R. Acad. Sci. Paris 260 (1965), 5662-5665; 6503-6506.
- F. Ronga, Le calcul des classes duales aux singularités de Boardman d’ordre deux, Comment. Math. Helv. 47 (1972), 15–35 (French). MR 309129, DOI 10.1007/BF02566786
- R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43–87 (French). MR 87149
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 639-651
- MSC: Primary 58C27; Secondary 57R45
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055564-4
- MathSciNet review: 1055564