On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^ p=0$ on the compact manifolds
HTML articles powered by AMS MathViewer
- by Tiancheng Ouyang
- Trans. Amer. Math. Soc. 331 (1992), 503-527
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055810-7
- PDF | Request permission
Abstract:
In this paper, we study the existence, nonexistence, and uniqueness of positive solutions of semilinear equations $\Delta u + \lambda u - h{u^p}= 0$ on compact Riemannian manifolds as well as on bounded smooth domains in ${R^n}$ with homogeneous Dirichlet or Neumann boundary conditions.References
- Jerry L. Kazdan, Prescribing the curvature of a Riemannian manifold, CBMS Regional Conference Series in Mathematics, vol. 57, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. MR 787227, DOI 10.1090/cbms/057
- Kentaro Yano and Morio Obata, Conformal changes of Riemannian metrics, J. Differential Geometry 4 (1970), 53–72. MR 261500
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37. MR 125546
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274. MR 240748 H. Elíasson, On variations of metric, Math. Scand. 29 (1971), 317-327.
- Thierry Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424 (French). MR 279731
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Wei Ming Ni, On the elliptic equation $\Delta u+K(x)u^{(n+2)/(n-2)}=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529. MR 662915, DOI 10.1512/iumj.1982.31.31040
- Lars Inge Hedberg, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981), no. 3-4, 237–264. MR 639040, DOI 10.1007/BF02392874
- Lars Inge Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299–319. MR 328088, DOI 10.1007/BF01181619
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 503-527
- MSC: Primary 35B05; Secondary 35J60, 58G20, 58G30
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055810-7
- MathSciNet review: 1055810