Growth rates, $Z_ p$-homology, and volumes of hyperbolic $3$-manifolds
HTML articles powered by AMS MathViewer
- by Peter B. Shalen and Philip Wagreich
- Trans. Amer. Math. Soc. 331 (1992), 895-917
- DOI: https://doi.org/10.1090/S0002-9947-1992-1156298-8
- PDF | Request permission
Abstract:
It is shown that if $M$ is a closed orientable irreducible $3$-manifold and $n$ is a nonnegative integer, and if ${H_1}(M,{\mathbb {Z}_p})$ has rank $\geq n + 2$ for some prime $p$, then every $n$-generator subgroup of ${\pi _1} (M)$ has infinite index in ${\pi _1} (M)$, and is in fact contained in infinitely many finite-index subgroups of ${\pi _1} (M)$. This result is used to estimate the growth rates of the fundamental group of a $3$-manifold in terms of the rank of the ${\mathbb {Z}_p}$-homology. In particular it is used to show that the fundamental group of any closed hyperbolic $3$-manifold has uniformly exponential growth, in the sense that there is a lower bound for the exponential growth rate that depends only on the manifold and not on the choice of a finite generating set. The result also gives volume estimates for hyperbolic $3$-manifolds with enough ${\mathbb {Z}_p}$-homology, and a sufficient condition for an irreducible $3$-manifold to be almost sufficiently large.References
- Gilbert Baumslag and Peter B. Shalen, Groups whose three-generator subgroups are free, Bull. Austral. Math. Soc. 40 (1989), no. 2, 163–174. MR 1012825, DOI 10.1017/S0004972700004275
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- K. Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978), no. 3-4, 243–261. MR 512399, DOI 10.1007/BF01902361
- James W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123–148. MR 758901, DOI 10.1007/BF00146825 M. Culler and P. B. Shalen, Paradoxical decompositions, Margulis numbers and volumes of hyperbolic $3$-manifolds, Preprint, Univ. of Illinois at Chicago.
- Benny Evans and Louise Moser, Solvable fundamental groups of compact $3$-manifolds, Trans. Amer. Math. Soc. 168 (1972), 189–210. MR 301742, DOI 10.1090/S0002-9947-1972-0301742-6 P. Fatou, Fonctions automorphes, Vol. 2, Théorie des Fonctions Algébriques (P. E. Appell and E. Goursat, Eds.), Gauthiers-Villars, Paris, 1930, pp. 158-160. M. Gromov, Structures métriques pour les variétés Riemanniennes, Fernand-Nathan, Paris.
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- William H. Jaco and Peter B. Shalen, Seifert fibered spaces in $3$-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. MR 539411, DOI 10.1090/memo/0220
- Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
- A. G. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR 0109842
- Alexander Lubotzky, Group presentation, $p$-adic analytic groups and lattices in $\textrm {SL}_{2}(\textbf {C})$, Ann. of Math. (2) 118 (1983), no. 1, 115–130. MR 707163, DOI 10.2307/2006956
- A. Malcev, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 405–422 (Russian, with English summary). MR 0003420
- G. A. Margulis, Arithmeticity of nonuniform lattices, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 88–89 (Russian). MR 0330314
- William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659. MR 678484, DOI 10.2307/2007026 G. Mess, Centers of $3$-manifold groups and groups which are coarse quasiisometric to planes, Preprint, Univ. of Calif., Los Angeles, 1990. —, Finite covers and a theorem of Lubotzky, Preprint, Univ. of Calif., Los Angeles.
- Robert Meyerhoff, A lower bound for the volume of hyperbolic $3$-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038–1056. MR 918586, DOI 10.4153/CJM-1987-053-6
- Robert Meyerhoff, Sphere-packing and volume in hyperbolic $3$-space, Comment. Math. Helv. 61 (1986), no. 2, 271–278. MR 856090, DOI 10.1007/BF02621915
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311
- Walter Parry, A sharper Tits alternative for $3$-manifold groups, Israel J. Math. 77 (1992), no. 3, 265–271. MR 1194795, DOI 10.1007/BF02773691
- G. P. Scott, Finitely generated $3$-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437–440. MR 380763, DOI 10.1112/jlms/s2-6.3.437
- Peter Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980), no. 2, 241–277. MR 564473, DOI 10.2307/2374238
- Peter Scott, There are no fake Seifert fibre spaces with infinite $\pi _{1}$, Ann. of Math. (2) 117 (1983), no. 1, 35–70. MR 683801, DOI 10.2307/2006970
- Peter B. Shalen, A torus theorem for regular branched covers of $S^{3}$, Michigan Math. J. 28 (1981), no. 3, 347–358. MR 629367
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12–19. MR 121796, DOI 10.2307/1970146
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7 W. P. Thurston, Geometry and toplogy of $3$-manifolds, Photocopied notes, Princeton Univ., 1978. T. Tucker, On Kleinian groups and $3$-manifolds of Euler characteristic zero, Unpublished.
- V. G. Turaev, Nilpotent homotopy types of closed $3$-manifolds, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 355–366. MR 770255, DOI 10.1007/BFb0099951
- Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 285536, DOI 10.1016/0040-9383(72)90022-5
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York-Heidelberg, 1973. MR 0335656
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 331 (1992), 895-917
- MSC: Primary 57M05; Secondary 20F05, 57M07, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1156298-8
- MathSciNet review: 1156298